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Adelic automorphic forms

(I) Let G be a connected reductive Q-group, with
(complex) Lie algebra g. Let Z(g) = Z (U(g)). In the
adelic world the role of the arithmetic subgroup Γ (resp. of
G (R)) is played by G (Q) (resp. G (A)).

(II) Pick an embedding (over Q) G ⊂ GLn(C) and define (with
||g∞|| as usual)

||g || = ||g∞||•
∏
p

||gp||, ||gp|| = max(max
ij
|(gp)ij |p, 1/| det(gp)|p).

This gives a norm on G (A) (depending on the embedding)
and a notion (independent of the embedding) of moderate
growth for functions f : G (A)→ C.
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Adelic automorphic forms

(I) A map f : G (A)→ C is called smooth if it is smooth in the
”real variable” and locally constant in the ”finite variable”,
via the decomposition G (A) = G (R)× G (Af ), i.e. for any
g = (g∞, gf ) ∈ G (A) there is a neighborhood V = V∞ × Vf

of g and ϕ ∈ C∞(V∞) such that

f (x∞, xf ) = ϕ(x∞), (x∞, xf ) ∈ V .

(II) A map f ∈ C∞(G (Q)\G (A)) is an automorphic form for G if

• f is K∞-finite and invariant by right translation by some
compact open subgroup Kf of G (Af ).

• f is Z(g)-finite.

• f has moderate growth.
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Adelic automorphic forms

(I) The space A (G ) of adelic automorphic forms for G has a
natural action of G (Af ), by right translation. If Kf is a
compact open subgroup of G (Af ) let

A (G ,Kf ) = A (G )Kf .

By definition
A (G ) = lim−→

Kf

A (G ,Kf ).



Adelic automorphic forms
(I) We can relate each A (G ,Kf ) with a space of classical

automorphic forms for various congruence subgroups of
G (Q), depending on Kf . The finiteness of the class number
of G ensures that one can write

G (Af ) =
h∐

i=1

G (Q)giKf .

(II) Letting Γi = G (Q) ∩ giKf g
−1
i , we obtain a homeomorphism

G (Q)\G (A)/Kf '
h∐

i=1

Γi\G (R), Γix → G (Q)(x , gi )Kf .

Unwinding definitions, we obtain

A (G ,Kf ) '
h⊕

i=1

A (G , Γi ), f → (x → f (x , gi )).

It also follows that A (G ) is a (g,K )× G (Af )-module.
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A useful reduction

(I) Let AG be the split component of G and

G (A)1 = {g ∈ G (A)| |χ(g)| = 1 ∀χ ∈ X (G )Q}.

The adelic analogue of the decomposition
G (R) =0 G (R)× AG is

G (A) = G (A)1 × AG .

(II) The automorphic quotient

[G ] = G (Q)AG\G (A) ' G (Q)\G (A)1

has finite invariant measure (Borel, Harish-Chandra) and the
study of A (G ) reduces to that of

A (G )1 := {f ∈ A (G )| f (zx) = f (x), z ∈ AG , x ∈ G (A)}.
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A useful reduction

(I) More precisely

• there is a surjective homomorphism with kernel G (A)1

HG : G (A)→ HomZ(X (G )Q,R), HG (g)(χ) := log |χ(g)|,

where |•| : A∗ → R>0 is the usual character.

• for any λ ∈ a∗G ⊗ C and any polynomial function P on aG
the map

fλ,P(g) = eHG (g)(λ)p(HG (g))

is in A (G ) (exercise!). Let Pol be the vector space
generated by these functions as λ and P vary.

• the multiplication map induces an isomorphism

Pol⊗C A (G )1 ' A (G ).



Cusp forms

(I) If P is a Q-parabolic of G , with unipotent radical N, then
N(Q)\N(A) is compact and for any f ∈ C (G (Q)\G (A)) we
can define its constant term along P by

fP(g) =

∫
N(Q)\N(A)

f (ng)dn, g ∈ G (A).

The automorphic form f is called cuspidal or cusp form if
its constant terms along proper Q-parabolics of G vanish.

(II) The space A (G )1
cusp of cusp forms in A (G )1 is a

(g,K∞)× G (Af )-submodule of A (G ).
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Cusp forms
(I) Let

A (G )1
L2 = {f ∈ A (G )1|

∫
[G ]
|f (x)|2dx <∞}.

The classical-adelic dictionnary and the classical GPS
theorem give

Theorem (Gelfand, Piatetski-Shapiro)

a) Any f ∈ A (G )1
cusp is bounded.

b) The G (A)1-representation L2([G ])cusp has a discrete
decomposition.

c) A (G )1
cusp and A (G )1

L2 are semi-simple
(g,K∞)× G (Af )-modules, with finite multiplicities.



The discrete spectrum

(I) The irreducible (g,K∞)× G (Af )-modules appearing in the
decomposition of A (G )1

cusp are called cuspidal
automorphic representations of G (A)1. Note that they are
not really representations of G (A), only of G (Af )!

(II) Let L2([G ])disc be the Hilbert sum of all irreducible
sub-representations of L2([G ]). This is called the discrete
spectrum and by the above theorem it contains the cuspidal
part. These two are equal if and only if [G ] is compact (the
constant function 1 is not cuspidal, but belongs to the
discrete spectrum when the quotient is not compact).
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The discrete spectrum
(I) The next result is a beautiful and important reformulation of

the finiteness theorem:

Theorem (Harish-Chandra) L2([G ])disc has a discrete

decomposition, i.e. for any π ∈ Ĝ (A) we have

dimHomG(A)(π, L2([G ])) <∞.

(II) By the classical-adelic dictionary and simple manipulations
one reduces this to: if AG = {1} and Γ ⊂ G (Q) is

arithmetic, then for any π ∈ Ĝ (R)

dimHomG(R)(π, L2(Γ\G (R))) <∞.

(III) First, by Segal’s theorem π∞ is killed by a codimension 1
ideal J of Z.
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The discrete spectrum

(I) Next, pick v ∈ HC (π), WLOG v ∈ π(σ) for some σ ∈ K̂∞.
Then evaluation at v gives an embedding

HomG(R)(π, L2(Γ\G (R))) ⊂ A (G , Γ)[J, σ],

but the latter is finite dimensional by the finiteness theorem,
so we are done.

(II) The key point in proving the embedding above is the
following: if ϕ ∈ HomG(R)(π, L2(Γ\G (R))) and f = ϕ(v),
then f is clearly of type J, σ, and we need to show that f
has moderate growth. But f ∈ L2(Γ\G (R)) ⊂ L1(Γ\G (R)),
so we are done by the first fundamental estimate.
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Smooth representations, factorisation theorem

(I) From now on we take G = GL2 and write

Gv = G (Qv ), K∞ = O(2), Kp = G (Zp).

(II) The group G (Af ) is ”essentially” (but not really) the product
of the various Gp, so it is not unreasonable to think that its
irreducible representations are obtained from irreducible
representations of the various Gp. For this we have to be
more precise about which representations we consider.
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Smooth representations of locally profinite groups

(I) Let G be locally profinite group, i.e. a Hausdorff, locally
compact and totally disconnected topological group, e.g. Gp

or G (Af ).

(II) Let
Repsm(G )

be the category of smooth representations of G , i.e.
C-linear abstract representations π of G such that

π =
⋃
K≤G

πK ,

the union being taken over compact open subgroups K of G .
Equivalently, the stabiliser of any vector in π is open.
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Smooth representations of locally profinite groups

(I) A representation π ∈ Repsm(G ) is called admissible if
dimπK <∞ for any compact open subgroup K of G , or
equivalently HomK (σ, π) is finite dimensional for any σ ∈ K̂ .

(II) The following result is the p-adic analogue of the
admissibility of irreducible (g,K )-modules seen in the last
lecture. It is true for any p-adic reductive group, not only
Gp, but the proof is quite difficult (already for Gp):

Theorem (Bernstein, Jacquet) Any irreducible
π ∈ Repsm(Gp) is admissible.
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Hecke algebras
(I) The Hecke algebra of G is the space

H (G ) = LCc(G )

of locally constant functions f : G → C with compact
support, endowed with the convolution product

f ∗ g(x) =

∫
G
f (u)g(u−1x)du,

where we fix a Haar measure du on G . It is a non-unital
associative algebra.

(II) Any π ∈ Repsm(G ) is naturally a module over H (G ), via

f .v =

∫
G
f (g)g .vdg = vol(K )

∑
g∈G /K

f (g)g .v ,

where K is a sufficiently small compact open subgroup of G .
The sum is finite since f has compact support.
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Hecke algebras

(I) One shows without too much difficulty that Repsm(G ) is
equivalent to the category of H (G )-modules M such that
any m ∈ M satisfies f .m = m for some f ∈H (G ).

(II) If K is a compact open subgroup of G let

H (G ,K ) = {f ∈H (G )| f (k1gk2) = f (g), k1, k2 ∈ K , g ∈ G }.

This is a sub-algebra of H (G ), having 1
vol(K) 1K as a unit

element. Moreover

H (G ) = lim−→
K

H (G ,K ).

For any π ∈ Repsm(G ) the space πK is naturally a module
over H (G ,K ), and if π is irreducible and πK 6= 0, this
module is simple (excellent exercise).
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Hecke algebras
(I) A crucial example for the sequel is the case G = Gp and

K = Kp. Normalize dg so that vol(Kp) = 1. The algebra
H (Gp,Kp) is called the spherical Hecke algebra. It has a
very beautiful description:

Theorem There is a natural isomorphism of C-algebras

S : C[X±1,Y ] 'Hp.

As C-vector spaces

Hp =
⊕

g∈Kp\Gp/Kp

C1KpgKp ,

and by elementary divisors

Gp =
∐

a≤b∈Z
Kp

(
pa 0
0 pb

)
Kp.



Hecke algebras

(I) Thus a C-basis of Hp is given by the functions

ϕa,b = 1
Kp

pa 0
0 pb

Kp

.

Let
Rp = ϕ1,1, Tp = ϕ0,1.

One can check by hand that sending X to Rp and Y to Tp

yields the isomorphism in the theorem.

(II) More canonically and closer to the situation for real groups,
we have an analogue of the Harish-Chandra transform for
SL2(R), the Satake transform (for ϕ ∈Hp)

S(ϕ)(t) = |a/d |1/2
p

∫
Qp

ϕ(t

(
1 x
0 1

)
)dx , t =

(
a 0
0 d

)
.
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Hecke algebras

(I) One proves that it induces an isomorphism of C-algebras
(the Satake isomorphism)

Hp ' LCc(T (Qp)/T (Zp))S2 '

' C[X±,Y±]S2 ' C[X + Y , (XY )±].

where T is the diagonal torus and S2 ' Z/2Z (Weyl group
of (G ,T )) acts by permuting the diagonal entries. This
isomorphism sends Rp to XY and Tp to

√
p(X + Y ).



Spherical representations

(I) An irreducible representation π ∈ Repsm(Gp) is called
unramified or spherical if πKp 6= 0. In this case πKp is a
simple module over Hp ' C[X±1,Y ], thus it is

one-dimensional, and Tp,Rp ∈Hp act on π
Kp
p by scalars

Tp(π) and Rp(π). Moreover π is determined up to
isomorphism by these scalars.

(II) The Satake parameters of π are the roots of the polynomial
X 2 − p−1/2Tp(π)X + Rp(π). They form an un-ordered pair
(t1, t2) ∈ (C∗ × C∗)/S2, and they determine the spherical
representation π up to isomorphism. Conversely, any
un-ordered pair arises from a spherical representation, thus

{spherical representations ofGp}/ '←→ (C∗ × C∗)/S2.
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Spherical representations

(I) More precisely, given t1, t2 ∈ C∗ consider the unramified
characters

χi : Q∗p → C∗, χi (x) = t
vp(x)
i

and the induced representation

I (χ1, χ2) = {ϕ ∈ LC (Gp)|ϕ(

(
a b
0 d

)
g)

= χ1(a)χ2(d)|a/d |1/2
p ϕ(g) ∀a, b, d , g}

with g .ϕ(x) = ϕ(xg).



Spherical representations

(I) Then one can check that I (χ1, χ2) has a unique spherical
sub-quotient π(t1, t2), whose isomorphism class depends only
on the set {t1, t2}. Moreover, dimπ(t1, t2) <∞ if and only
if t1/t2 ∈ {p, p−1}, in which case dimπ(t1, t2) = 1.

(II) Conversely, if π is unramified, with Satake parameters t1, t2,
then

π ' π(t1, t2).
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Spherical representations

(I) Note that I (χ1, χ2) makes sense for any smooth (i.e. open
kernel) characters χi : Q∗p → C∗. It will be proved in Olivier
Taibi’s course that I (χ1, χ2) is admissible, of length at most
2, irreducible when χ1χ

−1
2 6= |•|±1

p . Moreover I (χ1, χ2) has a
unique infinite-dimensional sub-quotient π(χ1, χ2), and

π(χ1, χ2) ' π(δ1, δ2)⇔ (δ1, δ2) ∈ {(χ1, χ2), (χ2, χ1)}.



The factorisation theorem

(I) Let π∞ be an irreducible (g,K∞)-module and let πp be a
smooth irreducible representation of Gp, such that πp is
spherical for almost all p (i.e. all but finitely many).

(II) Fix nonzero vectors ep ∈ π
Kp
p for all p for which πp is

spherical and define the restricted tensor product

⊗′vπv := lim−→
S

⊗v∈Sπv ,

over all finite subsets S of {2, 3, 5, ...} ∪ {∞} containing ∞
and all those p for which πp is not spherical, the transition
maps being ⊗v∈Sxv → ⊗v∈Sxv ⊗⊗v∈S ′KSev for S ⊂ S ′.

(III) Somewhat more concretely ⊗′vπv is spanned by vectors of
the form ⊗vxv with xv ∈ πv and xp = ep for almost all p.
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(II) Fix nonzero vectors ep ∈ π
Kp
p for all p for which πp is

spherical and define the restricted tensor product

⊗′vπv := lim−→
S

⊗v∈Sπv ,

over all finite subsets S of {2, 3, 5, ...} ∪ {∞} containing ∞
and all those p for which πp is not spherical, the transition
maps being ⊗v∈Sxv → ⊗v∈Sxv ⊗⊗v∈S ′KSev for S ⊂ S ′.

(III) Somewhat more concretely ⊗′vπv is spanned by vectors of
the form ⊗vxv with xv ∈ πv and xp = ep for almost all p.



The factorisation theorem

(I) We then have the following fundamental local-global result:

Theorem (Flath’s factorisation theorem) a) ⊗′vπv is an
irreducible, smooth and admissible (g,K∞)× G (Af )-module,
independent up to isomorphism on the choice of ep.

b) Any irreducible, smooth and admissible
(g,K∞)× G (Af )-module is obtained by this construction,
and the local factors πv are uniquely determined up to
isomorphism.

(II) There is also a ”topological” version of the above algebraic
theorem, which is much harder to prove. Namely, consider
now πv ∈ Ĝv , almost all of them being spherical (same
definition as in the algebraic case).
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The factorisation theorem

(I) This gives rise to a unitary representation π = ⊗̂′πv of
G (A), completion of ⊗′πv (defined as above, with ep chosen
of norm 1) for the hermitian product

〈⊗xv ,⊗yv 〉 =
∏
v

〈xv , yv 〉.

Theorem (Bernstein, Flath) We have ⊗̂′vπv ∈ Ĝ (A) (and
independent, up to isomorphism, of the choice of the unitary

spherical vectors ep) and any π ∈ Ĝ (A) is obtained this way,
the local factors πv being uniquely determined up to
isomorphism.



The factorisation theorem

(I) The two theorems are closely related: if Π ∈ Ĝ (A) has local
factors Πv and if

π∞ = HC (Π∞) = ΠK∞−fin
∞ , πp = Πsm

p :=
⋃

K≤Gp

ΠK
p ,

then πp ∈ Rep(Gp)sm is irreducible, π∞ is an irreducible
(g,K∞))-module (cf. previous lecture) and

ΠK−fin ' ⊗′πv

as (g,K∞)× G (Af )-modules, where K = K∞ ×
∏

p Kp.



The case of modular forms

(I) Let now N ≥ 1 be an integer and consider
f ∈ Sk(N) = Sk(Γ0(N)), say with k ≥ 2. We saw that we
can attach to f an automorphic form on Γ0(N)\SL2(R).
Now, a simple exercise shows that there is a natural
homeomorphism

Γ0(N)\SL2(R) ' Z (A)G (Q)\G (A)/K0(N),

where Z is the center of G and

K0(N) = {g ∈ G (Ẑ)| g ≡
(
∗ ∗
0 ∗

)
(mod N)} =∏

p|N

IwN
p ×

∏
gcd(p,N)=1

Kp,

with

IwN
p = {g ∈ Kp| g ≡

(
∗ ∗
0 ∗

)
(mod pvp(N))}.



The case of modular forms

(I) This induces an embedding

Sk(N)→ A (G )cusp, f → ϕf

with image consisting of those ϕ ∈ A (G )cusp killed by(
1 −i
−i 1

)
∈ U(g), right K0(N)-invariant and such that

ϕ(g

(
cos θ sin θ
− sin θ cos θ

)
) = e ikθϕ(g).

(II) The construction f → ϕf is compatible with the natural
inner products: for a suitable Haar measure dg on G (A) we
have∫

Γ0(N)\H
|f (z)|2yk dxdy

y2
=

∫
G(Q)Z(A)\G(A)

|ϕf (g)|2dg .
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The case of modular forms

(I) Since ϕf is right K0(N)-invariant, it follows that for
gcd(p,N) = 1 the map ϕf is right Kp-invariant. A direct
computation shows that

ϕTp(f ) = p
k
2
−1Tp.ϕf ,

where Tp.ϕf is the action of Tp ∈Hp on ϕf .

(II) Let
π(f ) = C[G (A)]ϕf ⊂ L2([G ])cusp.
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computation shows that

ϕTp(f ) = p
k
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where Tp.ϕf is the action of Tp ∈Hp on ϕf .

(II) Let
π(f ) = C[G (A)]ϕf ⊂ L2([G ])cusp.



The case of modular forms

(I) The next result is quite deep:

Theorem π(f ) is irreducible if and only if f is an eigenvector
of all Tp with gcd(p,N) = 1. Moreover, if f , f ′ ∈ Sk(N) are
T(N)-eigenforms, then π(f ) = π(f ′) if and only if the
eigenvalues of Tp on f and f ′ are the same for almost all p.

Let us focus only on the first part. One implication is easy:
if π(f ) is irreducible, by the factorisation theorem it is a
restricted tensor product of local factors πv . But π(f )Kp 6= 0
for gcd(p,N) = 1, thus πp must be spherical for these p, and

thus H (Gp,Kp) acts by scalars on π
Kp
p , thus also on π(f )Kp ,

and thus on ϕf itself. But then Tp acts by a scalar on f by
the compatibility of f → ϕf with Hecke operators.



The case of modular forms

(I) The other implication is much deeper. Say Tp(f ) = λpf for

gcd(p,N) = 1. Then Tp.ϕf = p1− k
2λpϕf and Rp.ϕf = ϕf .

Let Π be an irreducible summand of
Π(f ) = π(f )K−fin ⊂ A (G )cusp.

(II) Let F be the projection of ϕf on Π. Clearly F 6= 0 (as ϕf

generates Π(f )), F is Kp-invariant and Tp.F = p1− k
2λpF .

Thus if Πv are the local factors of Π, Πp is spherical with
Satake parameters t1, t1 satisfying p1/2(t1 + t2) = p1−k/2λp
and t1t2 = 1. It follows that the local factors at any p prime
to N of any irreducible summand of Π(f ) are isomorphic.
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The case of modular forms

(I) The result follows then from the next deep theorem, which
will hopefully be seen in Olivier Taibi’s course. It is due to
the work of many people: Jacquet-Langlands,
Piatetski-Shapiro, Miyake, Casselman, etc:

Theorem (strong multiplicity one) Let Π,Π′ ⊂ A (G )cusp

be irreducible (g,K∞)× G (Af )-submodules such that the
local factors Πv and Π′v are isomorphic for all but finitely
many places v . Then Π = Π′.

In particular this implies that

dimHomG(A)(π, L2([G ])cusp) ≤ 1

for all π ∈ Ĝ (A), a result known as the multiplicity one
theorem.



The case of modular forms
(I) Say f ∈ Sk(N) satisfies Tp(f ) = λpf for gcd(p,N) = 1. If

πp are the local factors of π(f ), then πp is spherical for
gcd(p,N) = 1, with Satake parameters

t1,p = p
1−k

2 αp, t2,p = p
1−k

2 βp,

where

X 2 − λpX + pk−1 = (X − αp)(X − βp).

(II) The next theorem, the Ramanujan-Petersson conjecture for
modular forms is a very deep and difficult result.

Theorem (Deligne) If f ∈ Sk(N) satisfies Tp(f ) = λpf for
gcd(p,N) = 1, then the Satake parameters of πp(f ) for
gcd(p,N) = 1 have absolute value 1, and so

|λp| ≤ 2p
k−1

2 .
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