Lecture 13: Back to \mathbb{GL}_2 , game over

Gabriel Dospinescu

CNRS, ENS Lyon

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Let G be a connected reductive Q-group, with (complex) Lie algebra g. Let 3(g) = Z(U(g)). In the adelic world the role of the arithmetic subgroup Γ (resp. of G(R)) is played by G(Q) (resp. G(A)).

- Let G be a connected reductive Q-group, with (complex) Lie algebra g. Let 3(g) = Z(U(g)). In the adelic world the role of the arithmetic subgroup Γ (resp. of G(R)) is played by G(Q) (resp. G(A)).
- (II) Pick an embedding (over \mathbb{Q}) $G \subset \mathbb{GL}_n(\mathbb{C})$ and define (with $||g_{\infty}||$ as usual)

$$||g|| = ||g_{\infty}|| \cdot \prod_{p} ||g_{p}||, \ ||g_{p}|| = \max(\max_{ij} |(g_{p})_{ij}|_{p}, 1/|\det(g_{p})|_{p}).$$

This gives a norm on $G(\mathbb{A})$ (depending on the embedding) and a notion (independent of the embedding) of moderate growth for functions $f : G(\mathbb{A}) \to \mathbb{C}$.

(I) A map f : G(A) → C is called smooth if it is smooth in the "real variable" and locally constant in the "finite variable", via the decomposition G(A) = G(R) × G(A_f), i.e. for any g = (g_∞, g_f) ∈ G(A) there is a neighborhood V = V_∞ × V_f of g and φ ∈ C[∞](V_∞) such that

$$f(x_{\infty}, x_f) = \varphi(x_{\infty}), \ (x_{\infty}, x_f) \in V.$$

(I) A map f : G(A) → C is called smooth if it is smooth in the "real variable" and locally constant in the "finite variable", via the decomposition G(A) = G(R) × G(A_f), i.e. for any g = (g_∞, g_f) ∈ G(A) there is a neighborhood V = V_∞ × V_f of g and φ ∈ C[∞](V_∞) such that

$$f(x_{\infty}, x_f) = \varphi(x_{\infty}), \ (x_{\infty}, x_f) \in V.$$

(II) A map $f \in C^\infty(G(\mathbb{Q}) ackslash G(\mathbb{A}))$ is an automorphic form for G if

• f is K_{∞} -finite and invariant by right translation by some compact open subgroup K_f of $G(\mathbb{A}_f)$.

- f is $\mathfrak{Z}(\mathfrak{g})$ -finite.
- f has moderate growth.

The space 𝔄(G) of adelic automorphic forms for G has a natural action of G(A_f), by right translation. If K_f is a compact open subgroup of G(A_f) let

$$\mathscr{A}(G, K_f) = \mathscr{A}(G)^{K_f}.$$

By definition

$$\mathscr{A}(G) = \varinjlim_{K_f} \mathscr{A}(G, K_f).$$

(I) We can relate each \$\alpha(G, K_f)\$ with a space of classical automorphic forms for various congruence subgroups of \$G(\overline{Q})\$, depending on \$K_f\$. The finiteness of the class number of \$G\$ ensures that one can write

$$G(\mathbb{A}_f) = \prod_{i=1}^h G(\mathbb{Q})g_i K_f$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(I) We can relate each \$\alpha(G, K_f)\$ with a space of classical automorphic forms for various congruence subgroups of \$G(\overline{Q})\$, depending on \$K_f\$. The finiteness of the class number of \$G\$ ensures that one can write

$$G(\mathbb{A}_f) = \prod_{i=1}^h G(\mathbb{Q})g_iK_f.$$

(II) Letting $\Gamma_i = G(\mathbb{Q}) \cap g_i K_f g_i^{-1}$, we obtain a homeomorphism

$$G(\mathbb{Q})\backslash G(\mathbb{A})/\mathcal{K}_f\simeq \coprod_{i=1}^h \Gamma_i\backslash G(\mathbb{R}), \Gamma_i x \to G(\mathbb{Q})(x,g_i)\mathcal{K}_f.$$

Unwinding definitions, we obtain

$$\mathscr{A}(G, K_f) \simeq \bigoplus_{i=1}^h \mathscr{A}(G, \Gamma_i), \ f \to (x \to f(x, g_i)).$$

It also follows that $\mathscr{A}(G)$ is a $(\mathfrak{g}, \mathcal{K}) \times G(\mathbb{A}_f)$ -module.

A useful reduction

(I) Let A_G be the split component of G and

$${\mathcal G}({\mathbb A})^1=\{g\in {\mathcal G}({\mathbb A})|\,|\chi(g)|=1\,\,orall\chi\in X({\mathcal G})_{\mathbb Q}\}.$$

The adelic analogue of the decomposition $G(\mathbb{R}) = {}^0 G(\mathbb{R}) \times A_G$ is

$$G(\mathbb{A}) = G(\mathbb{A})^1 \times A_G.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A useful reduction

(I) Let A_G be the split component of G and

$$G(\mathbb{A})^1 = \{ g \in G(\mathbb{A}) | \left| \chi(g) \right| = 1 \; orall \chi \in X(G)_{\mathbb{Q}} \}.$$

The adelic analogue of the decomposition $G(\mathbb{R}) = {}^0 G(\mathbb{R}) \times A_G$ is

$$G(\mathbb{A}) = G(\mathbb{A})^1 \times A_G.$$

(II) The automorphic quotient

$$[G] = G(\mathbb{Q})A_G ackslash G(\mathbb{A}) \simeq G(\mathbb{Q}) ackslash G(\mathbb{A})^1$$

has finite invariant measure (Borel, Harish-Chandra) and the study of $\mathscr{A}(G)$ reduces to that of

$$\mathscr{A}(G)^1 := \{ f \in \mathscr{A}(G) | f(zx) = f(x), z \in A_G, x \in G(\mathbb{A}) \}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A useful reduction

(I) More precisely

• there is a surjective homomorphism with kernel $G(\mathbb{A})^1$

 $H_G: G(\mathbb{A}) \to \operatorname{Hom}_{\mathbb{Z}}(X(G)_{\mathbb{Q}}, \mathbb{R}), \ H_G(g)(\chi) := \log |\chi(g)|,$ where $|\bullet|: \mathbb{A}^* \to \mathbb{R}_{>0}$ is the usual character.

• for any $\lambda \in \mathfrak{a}_G^* \otimes \mathbb{C}$ and any polynomial function P on \mathfrak{a}_G the map

$$f_{\lambda,P}(g) = e^{H_G(g)(\lambda)} p(H_G(g))$$

is in $\mathscr{A}(G)$ (exercise!). Let Pol be the vector space generated by these functions as λ and P vary.

• the multiplication map induces an isomorphism

$$\operatorname{Pol}\otimes_{\mathbb{C}}\mathscr{A}(G)^1\simeq \mathscr{A}(G).$$

Cusp forms

(1) If P is a \mathbb{Q} -parabolic of G, with unipotent radical N, then $N(\mathbb{Q})\setminus N(\mathbb{A})$ is compact and for any $f \in C(G(\mathbb{Q})\setminus G(\mathbb{A}))$ we can define its constant term along P by

$$f_P(g) = \int_{\mathcal{N}(\mathbb{Q})\setminus\mathcal{N}(\mathbb{A})} f(ng) dn, \ g \in G(\mathbb{A}).$$

The automorphic form f is called **cuspidal or cusp form** if its constant terms along **proper** \mathbb{Q} -parabolics of G vanish.

Cusp forms

(1) If P is a \mathbb{Q} -parabolic of G, with unipotent radical N, then $N(\mathbb{Q})\setminus N(\mathbb{A})$ is compact and for any $f \in C(G(\mathbb{Q})\setminus G(\mathbb{A}))$ we can define its constant term along P by

$$f_P(g) = \int_{\mathcal{N}(\mathbb{Q})\setminus\mathcal{N}(\mathbb{A})} f(ng) dn, \ g \in G(\mathbb{A}).$$

The automorphic form f is called **cuspidal or cusp form** if its constant terms along **proper** \mathbb{Q} -parabolics of G vanish.

(II) The space
$$\mathscr{A}(G)^1_{\text{cusp}}$$
 of cusp forms in $\mathscr{A}(G)^1$ is a $(\mathfrak{g}, K_{\infty}) \times G(\mathbb{A}_f)$ -submodule of $\mathscr{A}(G)$.

Cusp forms

(I) Let

$$\mathscr{A}(G)_{L^2}^1 = \{f \in \mathscr{A}(G)^1 | \int_{[G]} |f(x)|^2 dx < \infty\}.$$

The classical-adelic dictionnary and the classical GPS theorem give

Theorem (Gelfand, Piatetski-Shapiro)

a) Any $f \in \mathscr{A}(G)^1_{\mathrm{cusp}}$ is bounded.

b) The $G(\mathbb{A})^1$ -representation $L^2([G])_{cusp}$ has a discrete decomposition.

c) $\mathscr{A}(G)^1_{\mathrm{cusp}}$ and $\mathscr{A}(G)^1_{L^2}$ are semi-simple $(\mathfrak{g}, \mathcal{K}_{\infty}) \times G(\mathbb{A}_f)$ -modules, with finite multiplicities.

(I) The irreducible (g, K_∞) × G(A_f)-modules appearing in the decomposition of 𝔄(G)¹_{cusp} are called **cuspidal** automorphic representations of G(A)¹. Note that they are not really representations of G(A), only of G(A_f)!

- (I) The irreducible (g, K_∞) × G(A_f)-modules appearing in the decomposition of 𝒴(G)¹_{cusp} are called **cuspidal** automorphic representations of G(A)¹. Note that they are not really representations of G(A), only of G(A_f)!
- (II) Let L²([G])_{disc} be the Hilbert sum of all irreducible sub-representations of L²([G]). This is called the **discrete** spectrum and by the above theorem it contains the cuspidal part. These two are equal if and only if [G] is compact (the constant function 1 is not cuspidal, but belongs to the discrete spectrum when the quotient is not compact).

(I) The next result is a beautiful and important reformulation of the finiteness theorem:

Theorem (Harish-Chandra) $L^2([G])_{\text{disc}}$ has a discrete decomposition, i.e. for any $\pi \in \widehat{G(\mathbb{A})}$ we have dim $\operatorname{Hom}_{G(\mathbb{A})}(\pi, L^2([G])) < \infty$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(I) The next result is a beautiful and important reformulation of the finiteness theorem:

Theorem (Harish-Chandra) $L^2([G])_{\text{disc}}$ has a discrete decomposition, i.e. for any $\pi \in \widehat{G(\mathbb{A})}$ we have dim $\operatorname{Hom}_{\mathcal{G}(\mathbb{A})}(\pi, L^2([G])) < \infty$.

(II) By the classical-adelic dictionary and simple manipulations one reduces this to: if A_G = {1} and Γ ⊂ G(Q) is arithmetic, then for any π ∈ G(R) dim Hom_{G(R)}(π, L²(Γ\G(R))) < ∞.

(I) The next result is a beautiful and important reformulation of the finiteness theorem:

Theorem (Harish-Chandra) $L^2([G])_{\text{disc}}$ has a discrete decomposition, i.e. for any $\pi \in \widehat{G(\mathbb{A})}$ we have dim $\operatorname{Hom}_{G(\mathbb{A})}(\pi, L^2([G])) < \infty$.

(II) By the classical-adelic dictionary and simple manipulations one reduces this to: if A_G = {1} and Γ ⊂ G(Q) is arithmetic, then for any π ∈ G(R) dim Hom_{G(R)}(π, L²(Γ\G(R))) < ∞.

(III) First, by Segal's theorem π^{∞} is killed by a codimension 1 ideal J of 3.

(I) Next, pick $v \in HC(\pi)$, WLOG $v \in \pi(\sigma)$ for some $\sigma \in \widehat{K_{\infty}}$. Then evaluation at v gives an embedding

 $\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}(\pi, L^2(\Gamma \backslash \mathcal{G}(\mathbb{R}))) \subset \mathscr{A}(\mathcal{G}, \Gamma)[J, \sigma],$

but the latter is finite dimensional by the finiteness theorem, so we are done.

(I) Next, pick $v \in HC(\pi)$, WLOG $v \in \pi(\sigma)$ for some $\sigma \in \widehat{K_{\infty}}$. Then evaluation at v gives an embedding

$$\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}(\pi, L^2(\Gamma \backslash \mathcal{G}(\mathbb{R}))) \subset \mathscr{A}(\mathcal{G}, \Gamma)[J, \sigma],$$

but the latter is finite dimensional by the finiteness theorem, so we are done.

(II) The key point in proving the embedding above is the following: if $\varphi \in \operatorname{Hom}_{G(\mathbb{R})}(\pi, L^2(\Gamma \setminus G(\mathbb{R})))$ and $f = \varphi(v)$, then f is clearly of type J, σ , and we need to show that f has moderate growth. But $f \in L^2(\Gamma \setminus G(\mathbb{R})) \subset L^1(\Gamma \setminus G(\mathbb{R}))$, so we are done by the first fundamental estimate.

Smooth representations, factorisation theorem

(1) From now on we take $G = \mathbb{GL}_2$ and write

$$G_{\nu} = G(\mathbb{Q}_{\nu}), \ K_{\infty} = O(2), \ K_{p} = G(\mathbb{Z}_{p}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Smooth representations, factorisation theorem

(I) From now on we take $G = \mathbb{GL}_2$ and write

$$G_{\nu} = G(\mathbb{Q}_{\nu}), \ K_{\infty} = O(2), \ K_{p} = G(\mathbb{Z}_{p}).$$

(II) The group $G(\mathbb{A}_f)$ is "essentially" (but not really) the product of the various G_p , so it is not unreasonable to think that its irreducible representations are obtained from irreducible representations of the various G_p . For this we have to be more precise about which representations we consider.

Let *G* be locally profinite group, i.e. a Hausdorff, locally compact and totally disconnected topological group, e.g. *G_p* or *G*(A_f).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let *G* be locally profinite group, i.e. a Hausdorff, locally compact and totally disconnected topological group, e.g. *G_p* or *G*(A_f).

(II) Let

 $\operatorname{Rep}^{\operatorname{sm}}(\mathcal{G})$

be the category of **smooth representations** of \mathscr{G} , i.e. \mathbb{C} -linear abstract representations π of \mathscr{G} such that

$$\pi = \bigcup_{K \le \mathscr{G}} \pi^K,$$

the union being taken over compact open subgroups K of \mathscr{G} . Equivalently, the stabiliser of any vector in π is open.

 A representation π ∈ Repsm(𝔅) is called admissible if dim π^K < ∞ for any compact open subgroup K of 𝔅, or equivalently Hom_K(σ, π) is finite dimensional for any σ ∈ K̂.

- A representation π ∈ Repsm(𝔅) is called admissible if dim π^K < ∞ for any compact open subgroup K of 𝔅, or equivalently Hom_K(σ, π) is finite dimensional for any σ ∈ K̂.
- (II) The following result is the *p*-adic analogue of the admissibility of irreducible (g, K)-modules seen in the last lecture. It is true for any *p*-adic reductive group, not only G_p, but the proof is quite difficult (already for G_p):

Theorem (Bernstein, Jacquet) Any irreducible $\pi \in \operatorname{Rep}^{\operatorname{sm}}(G_p)$ is admissible.

(I) The Hecke algebra of \mathscr{G} is the space $\mathscr{H}(\mathscr{G}) = LC_c(\mathscr{G})$

of locally constant functions $f:\mathscr{G}\to\mathbb{C}$ with compact support, endowed with the convolution product

$$f * g(x) = \int_{\mathscr{G}} f(u)g(u^{-1}x)du,$$

where we fix a Haar measure du on \mathscr{G} . It is a non-unital associative algebra.

(I) The Hecke algebra of \mathscr{G} is the space $\mathscr{H}(\mathscr{G}) = LC_c(\mathscr{G})$

of locally constant functions $f: \mathscr{G} \to \mathbb{C}$ with compact support, endowed with the convolution product

$$f * g(x) = \int_{\mathscr{G}} f(u)g(u^{-1}x)du,$$

where we fix a Haar measure du on \mathscr{G} . It is a non-unital associative algebra.

(II) Any $\pi \in \operatorname{Rep}^{\operatorname{sm}}(\mathscr{G})$ is naturally a module over $\mathscr{H}(\mathscr{G})$, via $f.v = \int_{\mathscr{G}} f(g)g.vdg = \operatorname{vol}(K) \sum_{g \in \mathscr{G}/K} f(g)g.v,$

where K is a sufficiently small compact open subgroup of \mathscr{G} . The sum is finite since f has compact support.

(1) One shows without too much difficulty that $\operatorname{Rep}^{\operatorname{sm}}(\mathscr{G})$ is equivalent to the category of $\mathscr{H}(\mathscr{G})$ -modules M such that any $m \in M$ satisfies f.m = m for some $f \in \mathscr{H}(\mathscr{G})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(1) One shows without too much difficulty that $\operatorname{Rep}^{\operatorname{sm}}(\mathscr{G})$ is equivalent to the category of $\mathscr{H}(\mathscr{G})$ -modules M such that any $m \in M$ satisfies $f \cdot m = m$ for some $f \in \mathscr{H}(\mathscr{G})$.

(II) If K is a compact open subgroup of \mathscr{G} let

$$\mathscr{H}(\mathscr{G},\mathsf{K}) = \{f \in \mathscr{H}(\mathscr{G}) | f(k_1gk_2) = f(g), k_1, k_2 \in \mathsf{K}, g \in \mathscr{G}\}.$$

This is a sub-algebra of $\mathscr{H}(\mathscr{G})$, having $\frac{1}{\operatorname{vol}(\mathcal{K})} 1_{\mathcal{K}}$ as a unit element. Moreover

$$\mathscr{H}(\mathscr{G}) = \varinjlim_{K} \mathscr{H}(\mathscr{G}, K).$$

For any $\pi \in \operatorname{Rep}^{\operatorname{sm}}(\mathscr{G})$ the space π^{K} is naturally a module over $\mathscr{H}(\mathscr{G}, K)$, and if π is irreducible and $\pi^{K} \neq 0$, this module is simple (excellent exercise).

(1) A crucial example for the sequel is the case $\mathscr{G} = G_p$ and $\mathcal{K} = \mathcal{K}_p$. Normalize dg so that $\operatorname{vol}(\mathcal{K}_p) = 1$. The algebra $\mathscr{H}(G_p, \mathcal{K}_p)$ is called the **spherical Hecke algebra**. It has a very beautiful description:

Theorem There is a natural isomorphism of \mathbb{C} -algebras $\mathscr{S}: \mathbb{C}[X^{\pm 1}, Y] \simeq \mathscr{H}_p.$

As \mathbb{C} -vector spaces

$$\mathscr{H}_p = \bigoplus_{g \in K_p \setminus G_p / K_p} \mathbb{C} \mathbb{1}_{K_p g K_p},$$

and by elementary divisors

$$G_p = \prod_{a \leq b \in \mathbb{Z}} K_p \begin{pmatrix} p^a & 0 \\ 0 & p^b \end{pmatrix} K_p.$$

(I) Thus a \mathbb{C} -basis of \mathscr{H}_p is given by the functions

$$arphi_{\mathsf{a},b} = 1 \ \kappa_{\scriptscriptstyle P} egin{pmatrix} \mathsf{p}^{\mathsf{a}} & 0 \ 0 & \mathsf{p}^{\mathsf{b}} \end{pmatrix} \kappa_{\scriptscriptstyle P}$$

Let

$$R_{p}=\varphi_{1,1}, \ T_{p}=\varphi_{0,1}.$$

One can check by hand that sending X to R_p and Y to T_p yields the isomorphism in the theorem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(I) Thus a \mathbb{C} -basis of \mathscr{H}_p is given by the functions

$$arphi_{\mathsf{a},b} = 1 \ \kappa_{\scriptscriptstyle
ho} egin{pmatrix} \mathsf{p}^{\mathsf{a}} & 0 \ 0 & \mathsf{p}^{\mathsf{b}} \end{pmatrix} \kappa_{\scriptscriptstyle
ho}$$

Let

$$R_p = \varphi_{1,1}, \ T_p = \varphi_{0,1}.$$

One can check by hand that sending X to R_p and Y to T_p yields the isomorphism in the theorem.

(II) More canonically and closer to the situation for real groups, we have an analogue of the Harish-Chandra transform for $\mathbb{SL}_2(\mathbb{R})$, the **Satake transform** (for $\varphi \in \mathscr{H}_p$)

$$S(\varphi)(t) = |a/d|_p^{1/2} \int_{\mathbb{Q}_p} \varphi(t \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}) dx, \ t = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}.$$

 One proves that it induces an isomorphism of C-algebras (the Satake isomorphism)

$$\mathscr{H}_p \simeq \mathrm{LC}_c (T(\mathbb{Q}_p)/T(\mathbb{Z}_p))^{S_2} \simeq$$

 $\simeq \mathbb{C}[X^{\pm}, Y^{\pm}]^{S_2} \simeq \mathbb{C}[X + Y, (XY)^{\pm}].$

where T is the diagonal torus and $S_2 \simeq \mathbb{Z}/2\mathbb{Z}$ (Weyl group of (G, T)) acts by permuting the diagonal entries. This isomorphism sends R_p to XY and T_p to $\sqrt{p}(X + Y)$.

Spherical representations

 An irreducible representation π ∈ Repsm(G_p) is called unramified or spherical if π^{K_p} ≠ 0. In this case π^{K_p} is a simple module over ℋ_p ≃ ℂ[X^{±1}, Y], thus it is one-dimensional, and T_p, R_p ∈ ℋ_p act on π^{K_p}_p by scalars T_p(π) and R_p(π). Moreover π is determined up to isomorphism by these scalars.

 An irreducible representation π ∈ Repsm(G_p) is called unramified or spherical if π^{K_p} ≠ 0. In this case π^{K_p} is a simple module over ℋ_p ≃ ℂ[X^{±1}, Y], thus it is one-dimensional, and T_p, R_p ∈ ℋ_p act on π^{K_p}_p by scalars T_p(π) and R_p(π). Moreover π is determined up to isomorphism by these scalars.

(II) The **Satake parameters** of π are the roots of the polynomial $X^2 - p^{-1/2}T_p(\pi)X + R_p(\pi)$. They form an un-ordered pair $(t_1, t_2) \in (\mathbb{C}^* \times \mathbb{C}^*)/S_2$, and they determine the spherical representation π up to isomorphism. Conversely, any un-ordered pair arises from a spherical representation, thus

{spherical representations of G_p }/ $\simeq \longleftrightarrow (\mathbb{C}^* \times \mathbb{C}^*)/S_2$.

(1) More precisely, given $t_1, t_2 \in \mathbb{C}^*$ consider the unramified characters

$$\chi_i: \mathbb{Q}_p^* \to \mathbb{C}^*, \chi_i(x) = t_i^{v_p(x)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

and the induced representation

$$\begin{split} I(\chi_1,\chi_2) &= \{\varphi \in LC(G_p) | \varphi(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} g) \\ &= \chi_1(a)\chi_2(d) |a/d|_p^{1/2} \varphi(g) \; \forall a,b,d,g \} \\ \text{with } g.\varphi(x) &= \varphi(xg). \end{split}$$

Then one can check that *I*(*χ*₁, *χ*₂) has a unique spherical sub-quotient *π*(*t*₁, *t*₂), whose isomorphism class depends only on the set {*t*₁, *t*₂}. Moreover, dim *π*(*t*₁, *t*₂) < ∞ if and only if *t*₁/*t*₂ ∈ {*p*, *p*⁻¹}, in which case dim *π*(*t*₁, *t*₂) = 1.

- Then one can check that *I*(*χ*₁, *χ*₂) has a unique spherical sub-quotient *π*(*t*₁, *t*₂), whose isomorphism class depends only on the set {*t*₁, *t*₂}. Moreover, dim *π*(*t*₁, *t*₂) < ∞ if and only if *t*₁/*t*₂ ∈ {*p*, *p*⁻¹}, in which case dim *π*(*t*₁, *t*₂) = 1.
- (II) Conversely, if π is unramified, with Satake parameters t_1, t_2 , then

$$\pi\simeq\pi(t_1,t_2).$$

Note that *I*(*χ*₁, *χ*₂) makes sense for any smooth (i.e. open kernel) characters *χ_i* : Q^{*}_p → C^{*}. It will be proved in Olivier Taibi's course that *I*(*χ*₁, *χ*₂) is admissible, of length at most 2, irreducible when *χ*₁*χ*₂⁻¹ ≠ |•|^{±1}_p. Moreover *I*(*χ*₁, *χ*₂) has a unique infinite-dimensional sub-quotient *π*(*χ*₁, *χ*₂), and

$$\pi(\chi_1,\chi_2)\simeq \pi(\delta_1,\delta_2)\Leftrightarrow (\delta_1,\delta_2)\in\{(\chi_1,\chi_2),(\chi_2,\chi_1)\}.$$

Let π_∞ be an irreducible (g, K_∞)-module and let π_p be a smooth irreducible representation of G_p, such that π_p is spherical for almost all p (i.e. all but finitely many).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let π_∞ be an irreducible (g, K_∞)-module and let π_p be a smooth irreducible representation of G_p, such that π_p is spherical for almost all p (i.e. all but finitely many).
- (II) Fix nonzero vectors $e_p \in \pi_p^{K_p}$ for all p for which π_p is spherical and define the **restricted tensor product**

$$\otimes'_{\mathbf{v}}\pi_{\mathbf{v}}:=\varinjlim_{S}\otimes_{\mathbf{v}\in S}\pi_{\mathbf{v}},$$

over all finite subsets S of $\{2, 3, 5, ...\} \cup \{\infty\}$ containing ∞ and all those p for which π_p is not spherical, the transition maps being $\bigotimes_{v \in S} x_v \to \bigotimes_{v \in S} x_v \otimes \bigotimes_{v \in S' \setminus S} e_v$ for $S \subset S'$.

- Let π_∞ be an irreducible (g, K_∞)-module and let π_p be a smooth irreducible representation of G_p, such that π_p is spherical for almost all p (i.e. all but finitely many).
- (II) Fix nonzero vectors $e_p \in \pi_p^{K_p}$ for all p for which π_p is spherical and define the **restricted tensor product**

$$\otimes'_{\mathbf{v}}\pi_{\mathbf{v}}:=\varinjlim_{S}\otimes_{\mathbf{v}\in S}\pi_{\mathbf{v}},$$

over all finite subsets S of $\{2, 3, 5, ...\} \cup \{\infty\}$ containing ∞ and all those p for which π_p is not spherical, the transition maps being $\otimes_{v \in S} x_v \to \otimes_{v \in S} x_v \otimes \otimes_{v \in S' \setminus S} e_v$ for $S \subset S'$.

(III) Somewhat more concretely $\otimes'_{\nu} \pi_{\nu}$ is spanned by vectors of the form $\otimes_{\nu} x_{\nu}$ with $x_{\nu} \in \pi_{\nu}$ and $x_{p} = e_{p}$ for almost all p.

(I) We then have the following fundamental local-global result:

Theorem (Flath's factorisation theorem) a) $\otimes'_{\nu} \pi_{\nu}$ is an irreducible, smooth and admissible $(\mathfrak{g}, K_{\infty}) \times G(\mathbb{A}_{f})$ -module, independent up to isomorphism on the choice of e_{p} .

b) Any irreducible, smooth and admissible $(\mathfrak{g}, \mathcal{K}_{\infty}) \times G(\mathbb{A}_{f})$ -module is obtained by this construction, and the local factors π_{ν} are uniquely determined up to isomorphism.

(I) We then have the following fundamental local-global result:

Theorem (Flath's factorisation theorem) a) $\otimes'_{\nu} \pi_{\nu}$ is an irreducible, smooth and admissible $(\mathfrak{g}, K_{\infty}) \times G(\mathbb{A}_{f})$ -module, independent up to isomorphism on the choice of e_{p} .

b) Any irreducible, smooth and admissible $(\mathfrak{g}, K_{\infty}) \times G(\mathbb{A}_f)$ -module is obtained by this construction, and the local factors π_v are uniquely determined up to isomorphism.

(II) There is also a "topological" version of the above algebraic theorem, which is much harder to prove. Namely, consider now $\pi_v \in \widehat{G_v}$, almost all of them being spherical (same definition as in the algebraic case).

(1) This gives rise to a unitary representation $\pi = \widehat{\otimes}' \pi_v$ of $G(\mathbb{A})$, completion of $\otimes' \pi_v$ (defined as above, with e_p chosen of norm 1) for the hermitian product

$$\langle \otimes x_{\nu}, \otimes y_{\nu} \rangle = \prod_{\nu} \langle x_{\nu}, y_{\nu} \rangle.$$

Theorem (Bernstein, Flath) We have $\widehat{\otimes}'_{\nu}\pi_{\nu} \in \widehat{G}(\mathbb{A})$ (and independent, up to isomorphism, of the choice of the unitary spherical vectors e_p) and any $\pi \in \widehat{G}(\mathbb{A})$ is obtained this way, the local factors π_{ν} being uniquely determined up to isomorphism.

(I) The two theorems are closely related: if $\Pi \in \widehat{G}(\mathbb{A})$ has local factors Π_{v} and if

$$\pi_{\infty} = HC(\Pi_{\infty}) = \Pi_{\infty}^{K_{\infty} - \mathrm{fin}}, \ \pi_{p} = \Pi_{p}^{\mathrm{sm}} := \bigcup_{K \leq G_{p}} \Pi_{p}^{K},$$

then $\pi_p \in \operatorname{Rep}(\mathcal{G}_p)^{\operatorname{sm}}$ is irreducible, π_∞ is an irreducible $(\mathfrak{g}, \mathcal{K}_\infty)$ -module (cf. previous lecture) and

$$\Pi^{K-\mathrm{fin}}\simeq\otimes'\pi_{v}$$

as $(\mathfrak{g}, K_{\infty}) \times G(\mathbb{A}_{f})$ -modules, where $K = K_{\infty} \times \prod_{p} K_{p}$.

(1) Let now $N \ge 1$ be an integer and consider $f \in S_k(N) = S_k(\Gamma_0(N))$, say with $k \ge 2$. We saw that we can attach to f an automorphic form on $\Gamma_0(N) \setminus SL_2(\mathbb{R})$. Now, a simple exercise shows that there is a natural homeomorphism

 $\Gamma_0(N) \setminus \mathbb{SL}_2(\mathbb{R}) \simeq Z(\mathbb{A}) G(\mathbb{Q}) \setminus G(\mathbb{A}) / K_0(N),$

where Z is the center of G and

$$\begin{aligned} \mathcal{K}_0(N) &= \{g \in G(\hat{\mathbb{Z}}) | \, g \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N} \} = \\ &\prod_{p \mid N} \operatorname{Iw}_p^N \times \prod_{\gcd(p,N)=1} \mathcal{K}_p, \end{aligned}$$

with

$$\operatorname{Iw}_{p}^{N} = \{g \in \mathcal{K}_{p} | g \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{p^{v_{p}(N)}} \}.$$

(I) This induces an embedding

$$S_k(N) \to \mathscr{A}(G)_{\mathrm{cusp}}, f \to \varphi_f$$

with image consisting of those $\varphi \in \mathscr{A}(G)_{\text{cusp}}$ killed by $\begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} \in U(\mathfrak{g})$, right $K_0(N)$ -invariant and such that

$$\varphi(g\begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix}) = e^{ik\theta}\varphi(g).$$

(I) This induces an embedding

$$S_k(N) \to \mathscr{A}(G)_{\mathrm{cusp}}, f \to \varphi_f$$

with image consisting of those $\varphi \in \mathscr{A}(G)_{\text{cusp}}$ killed by $\begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} \in U(\mathfrak{g})$, right $K_0(N)$ -invariant and such that

$$arphi(gigg(egin{array}{cc} \cos heta & \sin heta\ -\sin heta & \cos heta \end{pmatrix})=e^{ik heta}arphi(g).$$

(II) The construction $f \to \varphi_f$ is compatible with the natural inner products: for a suitable Haar measure dg on $G(\mathbb{A})$ we have

$$\int_{\Gamma_0(N)\setminus\mathscr{H}} |f(z)|^2 y^k \frac{dxdy}{y^2} = \int_{G(\mathbb{Q})Z(\mathbb{A})\setminus G(\mathbb{A})} |\varphi_f(g)|^2 dg.$$

 Since φ_f is right K₀(N)-invariant, it follows that for gcd(p, N) = 1 the map φ_f is right K_p-invariant. A direct computation shows that

$$\varphi_{T_p(f)} = p^{\frac{k}{2}-1} T_p . \varphi_f,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $T_p.\varphi_f$ is the action of $T_p \in \mathscr{H}_p$ on φ_f .

 Since φ_f is right K₀(N)-invariant, it follows that for gcd(p, N) = 1 the map φ_f is right K_p-invariant. A direct computation shows that

$$\varphi_{T_p(f)} = p^{\frac{k}{2}-1} T_p . \varphi_f,$$

where $T_p.\varphi_f$ is the action of $T_p \in \mathscr{H}_p$ on φ_f .

(II) Let

$$\pi(f) = \overline{\mathbb{C}[G(\mathbb{A})]\varphi_f} \subset L^2([G])_{\mathrm{cusp}}.$$

(I) The next result is quite deep:

Theorem $\pi(f)$ is irreducible if and only if f is an eigenvector of all T_p with gcd(p, N) = 1. Moreover, if $f, f' \in S_k(N)$ are $\mathbb{T}^{(N)}$ -eigenforms, then $\pi(f) = \pi(f')$ if and only if the eigenvalues of T_p on f and f' are the same for almost all p.

Let us focus only on the first part. One implication is easy: if $\pi(f)$ is irreducible, by the factorisation theorem it is a restricted tensor product of local factors π_v . But $\pi(f)^{K_p} \neq 0$ for gcd(p, N) = 1, thus π_p must be spherical for these p, and thus $\mathscr{H}(G_p, K_p)$ acts by scalars on $\pi_p^{K_p}$, thus also on $\pi(f)^{K_p}$, and thus on φ_f itself. But then T_p acts by a scalar on f by the compatibility of $f \to \varphi_f$ with Hecke operators.

(I) The other implication is much deeper. Say T_p(f) = λ_pf for gcd(p, N) = 1. Then T_p.φ_f = p^{1-k/2}λ_pφ_f and R_p.φ_f = φ_f. Let Π be an irreducible summand of Π(f) = π(f)^{K-fin} ⊂ 𝒴(G)_{cusp}.

- (I) The other implication is much deeper. Say T_p(f) = λ_pf for gcd(p, N) = 1. Then T_p.φ_f = p^{1-k/2}λ_pφ_f and R_p.φ_f = φ_f. Let Π be an irreducible summand of Π(f) = π(f)^{K-fin} ⊂ 𝒴(G)_{cusp}.
- (II) Let *F* be the projection of φ_f on Π . Clearly $F \neq 0$ (as φ_f generates $\Pi(f)$), *F* is K_p -invariant and $T_p.F = p^{1-\frac{k}{2}}\lambda_pF$. Thus if Π_v are the local factors of Π , Π_p is spherical with Satake parameters t_1, t_1 satisfying $p^{1/2}(t_1 + t_2) = p^{1-k/2}\lambda_p$ and $t_1t_2 = 1$. It follows that the local factors at any *p* prime to *N* of any irreducible summand of $\Pi(f)$ are isomorphic.

 The result follows then from the next deep theorem, which will hopefully be seen in Olivier Taibi's course. It is due to the work of many people: Jacquet-Langlands, Piatetski-Shapiro, Miyake, Casselman, etc:

Theorem (strong multiplicity one) Let $\Pi, \Pi' \subset \mathscr{A}(G)_{cusp}$ be irreducible $(\mathfrak{g}, K_{\infty}) \times G(\mathbb{A}_f)$ -submodules such that the local factors Π_v and Π'_v are isomorphic for all but finitely many places v. Then $\Pi = \Pi'$.

In particular this implies that

$$\dim \operatorname{Hom}_{\mathcal{G}(\mathbb{A})}(\pi, L^2([\mathcal{G}])_{\operatorname{cusp}}) \leq 1$$

for all $\pi \in \widehat{G(\mathbb{A})}$, a result known as the multiplicity one theorem.

Say f ∈ S_k(N) satisfies T_p(f) = λ_pf for gcd(p, N) = 1. If π_p are the local factors of π(f), then π_p is spherical for gcd(p, N) = 1, with Satake parameters

$$t_{1,p} = p^{\frac{1-k}{2}} \alpha_p, \ t_{2,p} = p^{\frac{1-k}{2}} \beta_p,$$

where

$$X^2 - \lambda_p X + p^{k-1} = (X - \alpha_p)(X - \beta_p).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Say f ∈ S_k(N) satisfies T_p(f) = λ_pf for gcd(p, N) = 1. If π_p are the local factors of π(f), then π_p is spherical for gcd(p, N) = 1, with Satake parameters

$$t_{1,p} = p^{\frac{1-k}{2}} \alpha_p, \ t_{2,p} = p^{\frac{1-k}{2}} \beta_p,$$

where

$$X^2 - \lambda_p X + p^{k-1} = (X - \alpha_p)(X - \beta_p).$$

 (II) The next theorem, the Ramanujan-Petersson conjecture for modular forms is a very deep and difficult result.

Theorem (Deligne) If $f \in S_k(N)$ satisfies $T_p(f) = \lambda_p f$ for gcd(p, N) = 1, then the Satake parameters of $\pi_p(f)$ for gcd(p, N) = 1 have absolute value 1, and so $|\lambda_p| \leq 2p^{\frac{k-1}{2}}$.