Lecture 13: Back to $\mathbb{G L}_{2}$, game over

Gabriel Dospinescu

CNRS, ENS Lyon

Adelic automorphic forms

(I) Let G be a connected reductive \mathbb{Q}-group, with (complex) Lie algebra \mathfrak{g}. Let $\mathfrak{Z}(\mathfrak{g})=Z(U(\mathfrak{g}))$. In the adelic world the role of the arithmetic subgroup Γ (resp. of $G(\mathbb{R}))$ is played by $G(\mathbb{Q})($ resp. $G(\mathbb{A}))$.

Adelic automorphic forms

(I) Let G be a connected reductive \mathbb{Q}-group, with (complex) Lie algebra \mathfrak{g}. Let $\mathfrak{Z}(\mathfrak{g})=Z(U(\mathfrak{g}))$. In the adelic world the role of the arithmetic subgroup Γ (resp. of $G(\mathbb{R}))$ is played by $G(\mathbb{Q})($ resp. $G(\mathbb{A}))$.
(II) Pick an embedding (over \mathbb{Q}) $G \subset \mathbb{G L}_{n}(\mathbb{C})$ and define (with $\left\|g_{\infty}\right\|$ as usual)

$$
\|g\|=\left\|g_{\infty}\right\| \cdot \prod_{p}\left\|g_{p}\right\|,\left\|g_{p}\right\|=\max \left(\max _{i j}\left|\left(g_{p}\right)_{i j}\right|_{p}, 1 /\left|\operatorname{det}\left(g_{p}\right)\right|_{p}\right)
$$

This gives a norm on $G(\mathbb{A})$ (depending on the embedding) and a notion (independent of the embedding) of moderate growth for functions $f: G(\mathbb{A}) \rightarrow \mathbb{C}$.

Adelic automorphic forms

(I) A map $f: G(\mathbb{A}) \rightarrow \mathbb{C}$ is called smooth if it is smooth in the "real variable" and locally constant in the "finite variable", via the decomposition $G(\mathbb{A})=G(\mathbb{R}) \times G\left(\mathbb{A}_{f}\right)$, i.e. for any $g=\left(g_{\infty}, g_{f}\right) \in G(\mathbb{A})$ there is a neighborhood $V=V_{\infty} \times V_{f}$ of g and $\varphi \in C^{\infty}\left(V_{\infty}\right)$ such that

$$
f\left(x_{\infty}, x_{f}\right)=\varphi\left(x_{\infty}\right),\left(x_{\infty}, x_{f}\right) \in V
$$

Adelic automorphic forms

(I) A map $f: G(\mathbb{A}) \rightarrow \mathbb{C}$ is called smooth if it is smooth in the "real variable" and locally constant in the " finite variable", via the decomposition $G(\mathbb{A})=G(\mathbb{R}) \times G\left(\mathbb{A}_{f}\right)$, i.e. for any $g=\left(g_{\infty}, g_{f}\right) \in G(\mathbb{A})$ there is a neighborhood $V=V_{\infty} \times V_{f}$ of g and $\varphi \in C^{\infty}\left(V_{\infty}\right)$ such that

$$
f\left(x_{\infty}, x_{f}\right)=\varphi\left(x_{\infty}\right),\left(x_{\infty}, x_{f}\right) \in V
$$

(II) A map $f \in C^{\infty}(G(\mathbb{Q}) \backslash G(\mathbb{A}))$ is an automorphic form for G if

- f is K_{∞}-finite and invariant by right translation by some compact open subgroup K_{f} of $G\left(\mathbb{A}_{f}\right)$.
- f is $\mathfrak{Z}(\mathfrak{g})$-finite.
- f has moderate growth.

Adelic automorphic forms

(I) The space $\mathscr{A}(G)$ of adelic automorphic forms for G has a natural action of $G\left(\mathbb{A}_{f}\right)$, by right translation. If K_{f} is a compact open subgroup of $G\left(\mathbb{A}_{f}\right)$ let

$$
\mathscr{A}\left(G, K_{f}\right)=\mathscr{A}(G)^{K_{f}} .
$$

By definition

$$
\mathscr{A}(G)=\underset{K_{f}}{\lim } \mathscr{A}\left(G, K_{f}\right)
$$

Adelic automorphic forms

(I) We can relate each $\mathscr{A}\left(G, K_{f}\right)$ with a space of classical automorphic forms for various congruence subgroups of $G(\mathbb{Q})$, depending on K_{f}. The finiteness of the class number of G ensures that one can write

$$
G\left(\mathbb{A}_{f}\right)=\coprod_{i=1}^{h} G(\mathbb{Q}) g_{i} K_{f}
$$

Adelic automorphic forms

(I) We can relate each $\mathscr{A}\left(G, K_{f}\right)$ with a space of classical automorphic forms for various congruence subgroups of $G(\mathbb{Q})$, depending on K_{f}. The finiteness of the class number of G ensures that one can write

$$
G\left(\mathbb{A}_{f}\right)=\coprod_{i=1}^{h} G(\mathbb{Q}) g_{i} K_{f}
$$

(II) Letting $\Gamma_{i}=G(\mathbb{Q}) \cap g_{i} K_{f} g_{i}^{-1}$, we obtain a homeomorphism

$$
G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{f} \simeq \coprod_{i=1}^{h} \Gamma_{i} \backslash G(\mathbb{R}), \Gamma_{i} x \rightarrow G(\mathbb{Q})\left(x, g_{i}\right) K_{f}
$$

Unwinding definitions, we obtain

$$
\mathscr{A}\left(G, K_{f}\right) \simeq \bigoplus_{i=1}^{h} \mathscr{A}\left(G, \Gamma_{i}\right), f \rightarrow\left(x \rightarrow f\left(x, g_{i}\right)\right)
$$

It also follows that $\mathscr{A}(G)$ is a $(\mathfrak{g}, K) \times G\left(\mathbb{A}_{f}\right)$-module.

A useful reduction

(I) Let A_{G} be the split component of G and

$$
G(\mathbb{A})^{1}=\left\{g \in G(\mathbb{A})| | \chi(g) \mid=1 \forall \chi \in X(G)_{\mathbb{Q}}\right\}
$$

The adelic analogue of the decomposition $G(\mathbb{R})={ }^{0} G(\mathbb{R}) \times A_{G}$ is

$$
G(\mathbb{A})=G(\mathbb{A})^{1} \times A_{G}
$$

A useful reduction

(I) Let A_{G} be the split component of G and

$$
G(\mathbb{A})^{1}=\left\{g \in G(\mathbb{A})| | \chi(g) \mid=1 \forall \chi \in X(G)_{\mathbb{Q}}\right\}
$$

The adelic analogue of the decomposition $G(\mathbb{R})={ }^{0} G(\mathbb{R}) \times A_{G}$ is

$$
G(\mathbb{A})=G(\mathbb{A})^{1} \times A_{G}
$$

(II) The automorphic quotient

$$
[G]=G(\mathbb{Q}) A_{G} \backslash G(\mathbb{A}) \simeq G(\mathbb{Q}) \backslash G(\mathbb{A})^{1}
$$

has finite invariant measure (Borel, Harish-Chandra) and the study of $\mathscr{A}(G)$ reduces to that of

$$
\mathscr{A}(G)^{1}:=\left\{f \in \mathscr{A}(G) \mid f(z x)=f(x), \quad z \in A_{G}, x \in G(\mathbb{A})\right\} .
$$

A useful reduction

(I) More precisely

- there is a surjective homomorphism with kernel $G(\mathbb{A})^{1}$

$$
H_{G}: G(\mathbb{A}) \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(X(G)_{\mathbb{Q}}, \mathbb{R}\right), H_{G}(g)(\chi):=\log |\chi(g)|
$$

where $|\cdot|: \mathbb{A}^{*} \rightarrow \mathbb{R}_{>0}$ is the usual character.

- for any $\lambda \in \mathfrak{a}_{G}^{*} \otimes \mathbb{C}$ and any polynomial function P on \mathfrak{a}_{G} the map

$$
f_{\lambda, P}(g)=e^{H_{G}(g)(\lambda)} p\left(H_{G}(g)\right)
$$

is in $\mathscr{A}(G)$ (exercise!). Let Pol be the vector space generated by these functions as λ and P vary.

- the multiplication map induces an isomorphism

$$
\operatorname{Pol} \otimes_{\mathbb{C}} \mathscr{A}(G)^{1} \simeq \mathscr{A}(G)
$$

Cusp forms

(I) If P is a \mathbb{Q}-parabolic of G, with unipotent radical N, then $N(\mathbb{Q}) \backslash N(\mathbb{A})$ is compact and for any $f \in C(G(\mathbb{Q}) \backslash G(\mathbb{A}))$ we can define its constant term along P by

$$
f_{P}(g)=\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} f(n g) d n, g \in G(\mathbb{A}) .
$$

The automorphic form f is called cuspidal or cusp form if its constant terms along proper \mathbb{Q}-parabolics of G vanish.

Cusp forms

(I) If P is a \mathbb{Q}-parabolic of G, with unipotent radical N, then $N(\mathbb{Q}) \backslash N(\mathbb{A})$ is compact and for any $f \in C(G(\mathbb{Q}) \backslash G(\mathbb{A}))$ we can define its constant term along P by

$$
f_{P}(g)=\int_{N(\mathbb{Q}) \backslash N(\mathbb{A})} f(n g) d n, g \in G(\mathbb{A})
$$

The automorphic form f is called cuspidal or cusp form if its constant terms along proper \mathbb{Q}-parabolics of G vanish.
(II) The space $\mathscr{A}(G)_{\text {cusp }}^{1}$ of cusp forms in $\mathscr{A}(G)^{1}$ is a $\left(\mathfrak{g}, K_{\infty}\right) \times G\left(\mathbb{A}_{f}\right)$-submodule of $\mathscr{A}(G)$.

Cusp forms

(I) Let

$$
\mathscr{A}(G)_{L^{2}}^{1}=\left\{\left.f \in \mathscr{A}(G)^{1}\left|\int_{[G]}\right| f(x)\right|^{2} d x<\infty\right\}
$$

The classical-adelic dictionnary and the classical GPS theorem give

Theorem (Gelfand, Piatetski-Shapiro)
a) Any $f \in \mathscr{A}(G)_{\text {cusp }}^{1}$ is bounded.
b) The $G(\mathbb{A})^{1}$-representation $L^{2}([G])_{\text {cusp }}$ has a discrete decomposition.
c) $\mathscr{A}(G)_{\text {cusp }}^{1}$ and $\mathscr{A}(G)_{L^{2}}^{1}$ are semi-simple $\left(\mathfrak{g}, K_{\infty}\right) \times G\left(\mathbb{A}_{f}\right)$-modules, with finite multiplicities.

The discrete spectrum

(I) The irreducible $\left(\mathfrak{g}, K_{\infty}\right) \times G\left(\mathbb{A}_{f}\right)$-modules appearing in the decomposition of $\mathscr{A}(G)_{\text {cusp }}^{1}$ are called cuspidal automorphic representations of $G(\mathbb{A})^{1}$. Note that they are not really representations of $G(\mathbb{A})$, only of $G\left(\mathbb{A}_{f}\right)$!

The discrete spectrum

(I) The irreducible $\left(\mathfrak{g}, K_{\infty}\right) \times G\left(\mathbb{A}_{f}\right)$-modules appearing in the decomposition of $\mathscr{A}(G)_{\text {cusp }}^{1}$ are called cuspidal automorphic representations of $G(\mathbb{A})^{1}$. Note that they are not really representations of $G(\mathbb{A})$, only of $G\left(\mathbb{A}_{f}\right)$!
(II) Let $L^{2}([G])_{\text {disc }}$ be the Hilbert sum of all irreducible sub-representations of $L^{2}([G])$. This is called the discrete spectrum and by the above theorem it contains the cuspidal part. These two are equal if and only if $[G]$ is compact (the constant function 1 is not cuspidal, but belongs to the discrete spectrum when the quotient is not compact).

The discrete spectrum

(I) The next result is a beautiful and important reformulation of the finiteness theorem:

Theorem (Harish-Chandra) $L^{2}([G])_{\text {disc }}$ has a discrete decomposition, i.e. for any $\pi \in \widehat{G(\mathbb{A})}$ we have $\operatorname{dim} \operatorname{Hom}_{G(\mathbb{A})}\left(\pi, L^{2}([G])\right)<\infty$.

The discrete spectrum

(I) The next result is a beautiful and important reformulation of the finiteness theorem:

Theorem (Harish-Chandra) $L^{2}([G])_{\text {disc }}$ has a discrete decomposition, i.e. for any $\pi \in \widehat{G(\mathbb{A})}$ we have

$$
\operatorname{dim} \operatorname{Hom}_{G(\mathbb{A})}\left(\pi, L^{2}([G])\right)<\infty
$$

(II) By the classical-adelic dictionary and simple manipulations one reduces this to: if $A_{G}=\{1\}$ and $\Gamma \subset G(\mathbb{Q})$ is arithmetic, then for any $\pi \in \widehat{G(\mathbb{R})}$

$$
\operatorname{dim}_{\operatorname{Hom}_{G(\mathbb{R})}\left(\pi, L^{2}(\Gamma \backslash G(\mathbb{R}))\right)<\infty . . . ~}^{\text {. }}
$$

The discrete spectrum

(I) The next result is a beautiful and important reformulation of the finiteness theorem:

Theorem (Harish-Chandra) $L^{2}([G])_{\text {disc }}$ has a discrete decomposition, i.e. for any $\pi \in \widehat{G(\mathbb{A})}$ we have

$$
\operatorname{dim} \operatorname{Hom}_{G(\mathbb{A})}\left(\pi, L^{2}([G])\right)<\infty
$$

(II) By the classical-adelic dictionary and simple manipulations one reduces this to: if $A_{G}=\{1\}$ and $\Gamma \subset G(\mathbb{Q})$ is arithmetic, then for any $\pi \in \widehat{G(\mathbb{R})}$

$$
\operatorname{dim}_{\operatorname{Hom}_{G(\mathbb{R})}\left(\pi, L^{2}(\Gamma \backslash G(\mathbb{R}))\right)<\infty . . . ~}^{\text {. }}
$$

(III) First, by Segal's theorem π^{∞} is killed by a codimension 1 ideal J of \mathfrak{Z}.

The discrete spectrum

(I) Next, pick $v \in H C(\pi)$, WLOG $v \in \pi(\sigma)$ for some $\sigma \in \widehat{K_{\infty}}$. Then evaluation at v gives an embedding

$$
\operatorname{Hom}_{G(\mathbb{R})}\left(\pi, L^{2}(\Gamma \backslash G(\mathbb{R}))\right) \subset \mathscr{A}(G, \Gamma)[J, \sigma]
$$

but the latter is finite dimensional by the finiteness theorem, so we are done.

The discrete spectrum

(I) Next, pick $v \in H C(\pi)$, WLOG $v \in \pi(\sigma)$ for some $\sigma \in \widehat{K_{\infty}}$. Then evaluation at v gives an embedding

$$
\operatorname{Hom}_{G(\mathbb{R})}\left(\pi, L^{2}(\Gamma \backslash G(\mathbb{R}))\right) \subset \mathscr{A}(G, \Gamma)[J, \sigma]
$$

but the latter is finite dimensional by the finiteness theorem, so we are done.
(II) The key point in proving the embedding above is the following: if $\varphi \in \operatorname{Hom}_{G(\mathbb{R})}\left(\pi, L^{2}(\Gamma \backslash G(\mathbb{R}))\right)$ and $f=\varphi(v)$, then f is clearly of type J, σ, and we need to show that f has moderate growth. But $f \in L^{2}(\Gamma \backslash G(\mathbb{R})) \subset L^{1}(\Gamma \backslash G(\mathbb{R}))$, so we are done by the first fundamental estimate.

Smooth representations, factorisation theorem

(I) From now on we take $G=\mathbb{G L}_{2}$ and write

$$
G_{v}=G\left(\mathbb{Q}_{v}\right), K_{\infty}=O(2), K_{p}=G\left(\mathbb{Z}_{p}\right)
$$

Smooth representations, factorisation theorem

(I) From now on we take $G=\mathbb{G L}_{2}$ and write

$$
G_{v}=G\left(\mathbb{Q}_{v}\right), K_{\infty}=O(2), K_{p}=G\left(\mathbb{Z}_{p}\right)
$$

(II) The group $G\left(\mathbb{A}_{f}\right)$ is "essentially" (but not really) the product of the various G_{p}, so it is not unreasonable to think that its irreducible representations are obtained from irreducible representations of the various G_{p}. For this we have to be more precise about which representations we consider.

Smooth representations of locally profinite groups

(I) Let \mathscr{G} be locally profinite group, i.e. a Hausdorff, locally compact and totally disconnected topological group, e.g. G_{p} or $G\left(\mathbb{A}_{f}\right)$.

Smooth representations of locally profinite groups

(I) Let \mathscr{G} be locally profinite group, i.e. a Hausdorff, locally compact and totally disconnected topological group, e.g. G_{p} or $G\left(\mathbb{A}_{f}\right)$.
(II) Let

$$
\operatorname{Rep}^{\mathrm{sm}}(\mathscr{G})
$$

be the category of smooth representations of \mathscr{G}, i.e. \mathbb{C}-linear abstract representations π of \mathscr{G} such that

$$
\pi=\bigcup_{K \leq \mathscr{G}} \pi^{K}
$$

the union being taken over compact open subgroups K of \mathscr{G}. Equivalently, the stabiliser of any vector in π is open.

Smooth representations of locally profinite groups

(I) A representation $\pi \in \operatorname{Rep}^{\mathrm{sm}}(\mathscr{G})$ is called admissible if $\operatorname{dim} \pi^{K}<\infty$ for any compact open subgroup K of \mathscr{G}, or equivalently $\operatorname{Hom}_{K}(\sigma, \pi)$ is finite dimensional for any $\sigma \in \hat{K}$.

Smooth representations of locally profinite groups

(I) A representation $\pi \in \operatorname{Rep}^{\mathrm{sm}}(\mathscr{G})$ is called admissible if $\operatorname{dim} \pi^{K}<\infty$ for any compact open subgroup K of \mathscr{G}, or equivalently $\operatorname{Hom}_{K}(\sigma, \pi)$ is finite dimensional for any $\sigma \in \hat{K}$.
(II) The following result is the p-adic analogue of the admissibility of irreducible (\mathfrak{g}, K)-modules seen in the last lecture. It is true for any p-adic reductive group, not only G_{p}, but the proof is quite difficult (already for G_{p}):

Theorem (Bernstein, Jacquet) Any irreducible $\pi \in \operatorname{Rep}^{\mathrm{sm}}\left(G_{p}\right)$ is admissible.

Hecke algebras

(I) The Hecke algebra of \mathscr{G} is the space

$$
\mathscr{H}(\mathscr{G})=L C_{c}(\mathscr{G})
$$

of locally constant functions $f: \mathscr{G} \rightarrow \mathbb{C}$ with compact support, endowed with the convolution product

$$
f * g(x)=\int_{\mathscr{G}} f(u) g\left(u^{-1} x\right) d u
$$

where we fix a Haar measure $d u$ on \mathscr{G}. It is a non-unital associative algebra.

Hecke algebras

(I) The Hecke algebra of \mathscr{G} is the space

$$
\mathscr{H}(\mathscr{G})=L C_{c}(\mathscr{G})
$$

of locally constant functions $f: \mathscr{G} \rightarrow \mathbb{C}$ with compact support, endowed with the convolution product

$$
f * g(x)=\int_{\mathscr{G}} f(u) g\left(u^{-1} x\right) d u
$$

where we fix a Haar measure $d u$ on \mathscr{G}. It is a non-unital associative algebra.
(II) Any $\pi \in \operatorname{Rep}^{\mathrm{sm}}(\mathscr{G})$ is naturally a module over $\mathscr{H}(\mathscr{G})$, via

$$
f . v=\int_{\mathscr{G}} f(g) g \cdot v d g=\operatorname{vol}(K) \sum_{g \in \mathscr{G} / K} f(g) g \cdot v,
$$

where K is a sufficiently small compact open subgroup of \mathscr{G}.
The sum is finite since f has compact support.

Hecke algebras

(I) One shows without too much difficulty that $\operatorname{Rep}^{\mathrm{sm}}(\mathscr{G})$ is equivalent to the category of $\mathscr{H}(\mathscr{G})$-modules M such that any $m \in M$ satisfies $f . m=m$ for some $f \in \mathscr{H}(\mathscr{G})$.

Hecke algebras

(I) One shows without too much difficulty that $\operatorname{Rep}^{\mathrm{sm}}(\mathscr{G})$ is equivalent to the category of $\mathscr{H}(\mathscr{G})$-modules M such that any $m \in M$ satisfies $f . m=m$ for some $f \in \mathscr{H}(\mathscr{G})$.
(II) If K is a compact open subgroup of \mathscr{G} let
$\mathscr{H}(\mathscr{G}, K)=\left\{f \in \mathscr{H}(\mathscr{G}) \mid f\left(k_{1} g k_{2}\right)=f(g), k_{1}, k_{2} \in K, g \in \mathscr{G}\right\}$.
This is a sub-algebra of $\mathscr{H}(\mathscr{G})$, having $\frac{1}{\operatorname{vol}(K)} 1_{K}$ as a unit element. Moreover

$$
\mathscr{H}(\mathscr{G})=\underset{K}{\lim } \mathscr{H}(\mathscr{G}, K) .
$$

For any $\pi \in \operatorname{Rep}^{\mathrm{sm}}(\mathscr{G})$ the space π^{K} is naturally a module over $\mathscr{H}(\mathscr{G}, K)$, and if π is irreducible and $\pi^{K} \neq 0$, this module is simple (excellent exercise).

Hecke algebras

(I) A crucial example for the sequel is the case $\mathscr{G}=G_{p}$ and $K=K_{p}$. Normalize $d g$ so that $\operatorname{vol}\left(K_{p}\right)=1$. The algebra $\mathscr{H}\left(G_{p}, K_{p}\right)$ is called the spherical Hecke algebra. It has a very beautiful description:

Theorem There is a natural isomorphism of \mathbb{C}-algebras

$$
\mathscr{S}: \mathbb{C}\left[X^{ \pm 1}, Y\right] \simeq \mathscr{H}_{p}
$$

As \mathbb{C}-vector spaces

$$
\mathscr{H}_{p}=\bigoplus_{g \in K_{p} \backslash G_{p} / K_{p}} \mathbb{C} 1_{K_{p} g K_{p}}
$$

and by elementary divisors

$$
G_{p}=\coprod_{a \leq b \in \mathbb{Z}} K_{p}\left(\begin{array}{cc}
p^{a} & 0 \\
0 & p^{b}
\end{array}\right) K_{p}
$$

Hecke algebras

(I) Thus a \mathbb{C}-basis of \mathscr{H}_{p} is given by the functions

$$
\varphi_{a, b}=1 K_{p}\left(\begin{array}{cc}
p^{a} & 0 \\
0 & p^{b}
\end{array}\right) K_{p} .
$$

Let

$$
R_{p}=\varphi_{1,1}, \quad T_{p}=\varphi_{0,1}
$$

One can check by hand that sending X to R_{p} and Y to T_{p} yields the isomorphism in the theorem.

Hecke algebras

(I) Thus a \mathbb{C}-basis of \mathscr{H}_{p} is given by the functions

$$
\varphi_{a, b}=1 K_{p}\left(\begin{array}{cc}
p^{a} & 0 \\
0 & p^{b}
\end{array}\right) K_{p} .
$$

Let

$$
R_{p}=\varphi_{1,1}, \quad T_{p}=\varphi_{0,1}
$$

One can check by hand that sending X to R_{p} and Y to T_{p} yields the isomorphism in the theorem.
(II) More canonically and closer to the situation for real groups, we have an analogue of the Harish-Chandra transform for $\mathbb{S L}_{2}(\mathbb{R})$, the Satake transform (for $\varphi \in \mathscr{H}_{p}$)

$$
S(\varphi)(t)=|a / d|_{p}^{1 / 2} \int_{\mathbb{Q}_{p}} \varphi\left(t\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right) d x, t=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)
$$

Hecke algebras

(I) One proves that it induces an isomorphism of \mathbb{C}-algebras (the Satake isomorphism)

$$
\begin{gathered}
\mathscr{H}_{p} \simeq \operatorname{LC}_{c}\left(T\left(\mathbb{Q}_{p}\right) / T\left(\mathbb{Z}_{p}\right)\right)^{S_{2}} \simeq \\
\simeq \mathbb{C}\left[X^{ \pm}, Y^{ \pm}\right]^{S_{2}} \simeq \mathbb{C}\left[X+Y,(X Y)^{ \pm}\right] .
\end{gathered}
$$

where T is the diagonal torus and $S_{2} \simeq \mathbb{Z} / 2 \mathbb{Z}$ (Weyl group of (G, T)) acts by permuting the diagonal entries. This isomorphism sends R_{p} to $X Y$ and T_{p} to $\sqrt{p}(X+Y)$.

Spherical representations

(I) An irreducible representation $\pi \in \operatorname{Rep}^{\mathrm{sm}}\left(G_{p}\right)$ is called unramified or spherical if $\pi^{K_{p}} \neq 0$. In this case $\pi^{K_{p}}$ is a simple module over $\mathscr{H}_{p} \simeq \mathbb{C}\left[X^{ \pm 1}, Y\right]$, thus it is one-dimensional, and $T_{p}, R_{p} \in \mathscr{H}_{p}$ act on $\pi_{p}^{K_{p}}$ by scalars $T_{p}(\pi)$ and $R_{p}(\pi)$. Moreover π is determined up to isomorphism by these scalars.

Spherical representations

(I) An irreducible representation $\pi \in \operatorname{Rep}^{\mathrm{sm}}\left(G_{p}\right)$ is called unramified or spherical if $\pi^{K_{p}} \neq 0$. In this case $\pi^{K_{p}}$ is a simple module over $\mathscr{H}_{p} \simeq \mathbb{C}\left[X^{ \pm 1}, Y\right]$, thus it is one-dimensional, and $T_{p}, R_{p} \in \mathscr{H}_{p}$ act on $\pi_{p}^{K_{p}}$ by scalars $T_{p}(\pi)$ and $R_{p}(\pi)$. Moreover π is determined up to isomorphism by these scalars.
(II) The Satake parameters of π are the roots of the polynomial $X^{2}-p^{-1 / 2} T_{p}(\pi) X+R_{p}(\pi)$. They form an un-ordered pair $\left(t_{1}, t_{2}\right) \in\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right) / S_{2}$, and they determine the spherical representation π up to isomorphism. Conversely, any un-ordered pair arises from a spherical representation, thus
$\left\{\right.$ spherical representations of $\left.G_{p}\right\} / \simeq \longleftrightarrow\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right) / S_{2}$.

Spherical representations

(I) More precisely, given $t_{1}, t_{2} \in \mathbb{C}^{*}$ consider the unramified characters

$$
\chi_{i}: \mathbb{Q}_{p}^{*} \rightarrow \mathbb{C}^{*}, \chi_{i}(x)=t_{i}^{v_{p}(x)}
$$

and the induced representation

$$
\begin{aligned}
& I\left(\chi_{1}, \chi_{2}\right)=\left\{\varphi \in L C\left(G_{p}\right) \left\lvert\, \varphi\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) g\right)\right.\right. \\
& \left.=\chi_{1}(a) \chi_{2}(d)|a / d|_{p}^{1 / 2} \varphi(g) \forall a, b, d, g\right\}
\end{aligned}
$$

with $g \cdot \varphi(x)=\varphi(x g)$.

Spherical representations

(I) Then one can check that $I\left(\chi_{1}, \chi_{2}\right)$ has a unique spherical sub-quotient $\pi\left(t_{1}, t_{2}\right)$, whose isomorphism class depends only on the set $\left\{t_{1}, t_{2}\right\}$. Moreover, $\operatorname{dim} \pi\left(t_{1}, t_{2}\right)<\infty$ if and only if $t_{1} / t_{2} \in\left\{p, p^{-1}\right\}$, in which case $\operatorname{dim} \pi\left(t_{1}, t_{2}\right)=1$.

Spherical representations

(I) Then one can check that $I\left(\chi_{1}, \chi_{2}\right)$ has a unique spherical sub-quotient $\pi\left(t_{1}, t_{2}\right)$, whose isomorphism class depends only on the set $\left\{t_{1}, t_{2}\right\}$. Moreover, $\operatorname{dim} \pi\left(t_{1}, t_{2}\right)<\infty$ if and only if $t_{1} / t_{2} \in\left\{p, p^{-1}\right\}$, in which case $\operatorname{dim} \pi\left(t_{1}, t_{2}\right)=1$.
(II) Conversely, if π is unramified, with Satake parameters t_{1}, t_{2}, then

$$
\pi \simeq \pi\left(t_{1}, t_{2}\right)
$$

Spherical representations

(I) Note that $I\left(\chi_{1}, \chi_{2}\right)$ makes sense for any smooth (i.e. open kernel) characters $\chi_{i}: \mathbb{Q}_{p}^{*} \rightarrow \mathbb{C}^{*}$. It will be proved in Olivier Taibi's course that $I\left(\chi_{1}, \chi_{2}\right)$ is admissible, of length at most 2 , irreducible when $\chi_{1} \chi_{2}^{-1} \neq|\cdot|_{p}^{ \pm 1}$. Moreover $I\left(\chi_{1}, \chi_{2}\right)$ has a unique infinite-dimensional sub-quotient $\pi\left(\chi_{1}, \chi_{2}\right)$, and

$$
\pi\left(\chi_{1}, \chi_{2}\right) \simeq \pi\left(\delta_{1}, \delta_{2}\right) \Leftrightarrow\left(\delta_{1}, \delta_{2}\right) \in\left\{\left(\chi_{1}, \chi_{2}\right),\left(\chi_{2}, \chi_{1}\right)\right\}
$$

The factorisation theorem

(I) Let π_{∞} be an irreducible (\mathfrak{g}, K_{∞})-module and let π_{p} be a smooth irreducible representation of G_{p}, such that π_{p} is spherical for almost all p (i.e. all but finitely many).

The factorisation theorem

(I) Let π_{∞} be an irreducible (\mathfrak{g}, K_{∞})-module and let π_{p} be a smooth irreducible representation of G_{p}, such that π_{p} is spherical for almost all p (i.e. all but finitely many).
(II) Fix nonzero vectors $e_{p} \in \pi_{p}^{K_{p}}$ for all p for which π_{p} is spherical and define the restricted tensor product

$$
\otimes_{v}^{\prime} \pi_{v}:=\underset{S}{\lim _{s}} \otimes_{v \in S} \pi_{v}
$$

over all finite subsets S of $\{2,3,5, \ldots\} \cup\{\infty\}$ containing ∞ and all those p for which π_{p} is not spherical, the transition maps being $\otimes_{v \in S} x_{v} \rightarrow \otimes_{v \in S} x_{v} \otimes \otimes_{v \in S^{\prime} \backslash S} e_{v}$ for $S \subset S^{\prime}$.

The factorisation theorem

(I) Let π_{∞} be an irreducible (\mathfrak{g}, K_{∞})-module and let π_{p} be a smooth irreducible representation of G_{p}, such that π_{p} is spherical for almost all p (i.e. all but finitely many).
(II) Fix nonzero vectors $e_{p} \in \pi_{p}^{K_{p}}$ for all p for which π_{p} is spherical and define the restricted tensor product

$$
\otimes_{v}^{\prime} \pi_{v}:=\underset{S}{\lim _{s}} \otimes_{v \in S} \pi_{v}
$$

over all finite subsets S of $\{2,3,5, \ldots\} \cup\{\infty\}$ containing ∞ and all those p for which π_{p} is not spherical, the transition maps being $\otimes_{v \in S} x_{v} \rightarrow \otimes_{v \in S} x_{v} \otimes \otimes_{v \in S^{\prime} \backslash S} e_{v}$ for $S \subset S^{\prime}$.
(III) Somewhat more concretely $\otimes_{v}^{\prime} \pi_{v}$ is spanned by vectors of the form $\otimes_{v} x_{v}$ with $x_{v} \in \pi_{v}$ and $x_{p}=e_{p}$ for almost all p.

The factorisation theorem

(I) We then have the following fundamental local-global result:

Theorem (Flath's factorisation theorem) a) $\otimes_{v}^{\prime} \pi_{v}$ is an irreducible, smooth and admissible $\left(\mathfrak{g}, K_{\infty}\right) \times G\left(\mathbb{A}_{f}\right)$-module, independent up to isomorphism on the choice of e_{p}.
b) Any irreducible, smooth and admissible
$\left(\mathfrak{g}, K_{\infty}\right) \times G\left(\mathbb{A}_{f}\right)$-module is obtained by this construction, and the local factors π_{v} are uniquely determined up to isomorphism.

The factorisation theorem

(I) We then have the following fundamental local-global result:

Theorem (Flath's factorisation theorem) a) $\otimes_{v}^{\prime} \pi_{v}$ is an irreducible, smooth and admissible $\left(\mathfrak{g}, K_{\infty}\right) \times G\left(\mathbb{A}_{f}\right)$-module, independent up to isomorphism on the choice of e_{p}.
b) Any irreducible, smooth and admissible $\left(\mathfrak{g}, K_{\infty}\right) \times G\left(\mathbb{A}_{f}\right)$-module is obtained by this construction, and the local factors π_{v} are uniquely determined up to isomorphism.
(II) There is also a "topological" version of the above algebraic theorem, which is much harder to prove. Namely, consider now $\pi_{v} \in \widehat{G_{v}}$, almost all of them being spherical (same definition as in the algebraic case).

The factorisation theorem

(I) This gives rise to a unitary representation $\pi=\widehat{\otimes}^{\prime} \pi_{v}$ of $G(\mathbb{A})$, completion of $\otimes^{\prime} \pi_{v}$ (defined as above, with e_{p} chosen of norm 1) for the hermitian product

$$
\left\langle\otimes x_{v}, \otimes y_{v}\right\rangle=\prod_{v}\left\langle x_{v}, y_{v}\right\rangle
$$

Theorem (Bernstein, Flath) We have $\widehat{\otimes}_{v}^{\prime} \pi_{v} \in \widehat{G(\mathbb{A})}$ (and independent, up to isomorphism, of the choice of the unitary spherical vectors e_{p}) and any $\pi \in \widehat{G(\mathbb{A})}$ is obtained this way, the local factors π_{v} being uniquely determined up to isomorphism.

The factorisation theorem

(I) The two theorems are closely related: if $\Pi \in \widehat{G(\mathbb{A})}$ has local factors Π_{v} and if

$$
\pi_{\infty}=H C\left(\Pi_{\infty}\right)=\Pi_{\infty}^{K_{\infty}-\mathrm{fin}}, \pi_{p}=\Pi_{p}^{\mathrm{sm}}:=\bigcup_{K \leq G_{p}} \Pi_{p}^{K}
$$

then $\pi_{p} \in \operatorname{Rep}\left(G_{p}\right)^{\mathrm{sm}}$ is irreducible, π_{∞} is an irreducible ($\left.\mathfrak{g}, K_{\infty}\right)$)-module (cf. previous lecture) and

$$
\Pi^{K-\mathrm{fin}} \simeq \otimes^{\prime} \pi_{v}
$$

as $\left(\mathfrak{g}, K_{\infty}\right) \times G\left(\mathbb{A}_{f}\right)$-modules, where $K=K_{\infty} \times \prod_{p} K_{p}$.

The case of modular forms

(I) Let now $N \geq 1$ be an integer and consider
$f \in S_{k}(N)=S_{k}\left(\Gamma_{0}(N)\right)$, say with $k \geq 2$. We saw that we can attach to f an automorphic form on $\Gamma_{0}(N) \backslash \mathbb{S L}_{2}(\mathbb{R})$.
Now, a simple exercise shows that there is a natural homeomorphism

$$
\Gamma_{0}(N) \backslash \mathbb{S L}_{2}(\mathbb{R}) \simeq Z(\mathbb{A}) G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{0}(N)
$$

where Z is the center of G and

$$
\begin{gathered}
K_{0}(N)=\left\{g \in G(\hat{\mathbb{Z}}) \left\lvert\, g \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \quad(\bmod N)\right.\right\}= \\
\prod_{p \mid N} \operatorname{Iw}_{p}^{N} \times \prod_{\operatorname{gcd}(p, N)=1} K_{p},
\end{gathered}
$$

with

$$
\operatorname{Iw}_{p}^{N}=\left\{g \in K_{p} \left\lvert\, g \equiv\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right) \quad\left(\bmod p^{v_{p}(N)}\right)\right.\right\}
$$

The case of modular forms

(I) This induces an embedding

$$
S_{k}(N) \rightarrow \mathscr{A}(G)_{\text {cusp }}, f \rightarrow \varphi_{f}
$$

with image consisting of those $\varphi \in \mathscr{A}(G)_{\text {cusp }}$ killed by $\left(\begin{array}{cc}1 & -i \\ -i & 1\end{array}\right) \in U(\mathfrak{g})$, right $K_{0}(N)$-invariant and such that

$$
\varphi\left(g\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\right)=e^{i k \theta} \varphi(g)
$$

The case of modular forms

(I) This induces an embedding

$$
S_{k}(N) \rightarrow \mathscr{A}(G)_{\text {cusp }}, f \rightarrow \varphi_{f}
$$

with image consisting of those $\varphi \in \mathscr{A}(G)_{\text {cusp }}$ killed by $\left(\begin{array}{cc}1 & -i \\ -i & 1\end{array}\right) \in U(\mathfrak{g})$, right $K_{0}(N)$-invariant and such that

$$
\varphi\left(g\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\right)=e^{i k \theta} \varphi(g)
$$

(II) The construction $f \rightarrow \varphi_{f}$ is compatible with the natural inner products: for a suitable Haar measure $d g$ on $G(\mathbb{A})$ we have

$$
\int_{\Gamma_{0}(N) \backslash \mathscr{H}}|f(z)|^{2} y^{k} \frac{d x d y}{y^{2}}=\int_{G(\mathbb{Q}) Z(\mathbb{A}) \backslash G(\mathbb{A})}\left|\varphi_{f}(g)\right|^{2} d g .
$$

The case of modular forms

(I) Since φ_{f} is right $K_{0}(N)$-invariant, it follows that for $\operatorname{gcd}(p, N)=1$ the map φ_{f} is right K_{p}-invariant. A direct computation shows that

$$
\varphi_{T_{p}(f)}=p^{\frac{k}{2}-1} T_{p} \cdot \varphi_{f}
$$

where $T_{p} . \varphi_{f}$ is the action of $T_{p} \in \mathscr{H}_{p}$ on φ_{f}.

The case of modular forms

(I) Since φ_{f} is right $K_{0}(N)$-invariant, it follows that for $\operatorname{gcd}(p, N)=1$ the map φ_{f} is right K_{p}-invariant. A direct computation shows that

$$
\varphi_{T_{p}(f)}=p^{\frac{k}{2}-1} T_{p} \cdot \varphi_{f}
$$

where $T_{p} . \varphi_{f}$ is the action of $T_{p} \in \mathscr{H}_{p}$ on φ_{f}.
(II) Let

$$
\pi(f)=\overline{\mathbb{C}[G(\mathbb{A})] \varphi_{f}} \subset L^{2}([G])_{\text {cusp }}
$$

The case of modular forms

(I) The next result is quite deep:

Theorem $\pi(f)$ is irreducible if and only if f is an eigenvector of all T_{p} with $\operatorname{gcd}(p, N)=1$. Moreover, if $f, f^{\prime} \in S_{k}(N)$ are $\mathbb{T}^{(N)}$-eigenforms, then $\pi(f)=\pi\left(f^{\prime}\right)$ if and only if the eigenvalues of T_{p} on f and f^{\prime} are the same for almost all p.

Let us focus only on the first part. One implication is easy: if $\pi(f)$ is irreducible, by the factorisation theorem it is a restricted tensor product of local factors π_{v}. But $\pi(f)^{K_{p}} \neq 0$ for $\operatorname{gcd}(p, N)=1$, thus π_{p} must be spherical for these p, and thus $\mathscr{H}\left(G_{p}, K_{p}\right)$ acts by scalars on $\pi_{p}^{K_{p}}$, thus also on $\pi(f)^{K_{p}}$, and thus on φ_{f} itself. But then T_{p} acts by a scalar on f by the compatibility of $f \rightarrow \varphi_{f}$ with Hecke operators.

The case of modular forms

(I) The other implication is much deeper. Say $T_{p}(f)=\lambda_{p} f$ for $\operatorname{gcd}(p, N)=1$. Then $T_{p} \cdot \varphi_{f}=p^{1-\frac{k}{2}} \lambda_{p} \varphi_{f}$ and $R_{p} \cdot \varphi_{f}=\varphi_{f}$. Let Π be an irreducible summand of $\Pi(f)=\pi(f)^{K-\mathrm{fin}} \subset \mathscr{A}(G)_{\text {cusp }}$.

The case of modular forms

(I) The other implication is much deeper. Say $T_{p}(f)=\lambda_{p} f$ for $\operatorname{gcd}(p, N)=1$. Then $T_{p} \cdot \varphi_{f}=p^{1-\frac{k}{2}} \lambda_{p} \varphi_{f}$ and $R_{p} \cdot \varphi_{f}=\varphi_{f}$. Let Π be an irreducible summand of $\Pi(f)=\pi(f)^{K-\text { fin }} \subset \mathscr{A}(G)_{\text {cusp }}$.
(II) Let F be the projection of φ_{f} on Π. Clearly $F \neq 0$ (as φ_{f} generates $\Pi(f)), F$ is K_{p}-invariant and $T_{p} . F=p^{1-\frac{k}{2}} \lambda_{p} F$. Thus if Π_{v} are the local factors of Π, Π_{p} is spherical with Satake parameters t_{1}, t_{1} satisfying $p^{1 / 2}\left(t_{1}+t_{2}\right)=p^{1-k / 2} \lambda_{p}$ and $t_{1} t_{2}=1$. It follows that the local factors at any p prime to N of any irreducible summand of $\Pi(f)$ are isomorphic.

The case of modular forms

(I) The result follows then from the next deep theorem, which will hopefully be seen in Olivier Taibi's course. It is due to the work of many people: Jacquet-Langlands, Piatetski-Shapiro, Miyake, Casselman, etc:

Theorem (strong multiplicity one) Let $\Pi, \Pi^{\prime} \subset \mathscr{A}(G)_{\text {cusp }}$ be irreducible $\left(\mathfrak{g}, K_{\infty}\right) \times G\left(\mathbb{A}_{f}\right)$-submodules such that the local factors Π_{v} and Π_{v}^{\prime} are isomorphic for all but finitely many places v. Then $\Pi=\Pi^{\prime}$.

In particular this implies that

$$
\operatorname{dim} \operatorname{Hom}_{G(\mathbb{A})}\left(\pi, L^{2}([G])_{\mathrm{cusp}}\right) \leq 1
$$

for all $\pi \in \widehat{G(\mathbb{A})}$, a result known as the multiplicity one theorem.

The case of modular forms

(I) Say $f \in S_{k}(N)$ satisfies $T_{p}(f)=\lambda_{p} f$ for $\operatorname{gcd}(p, N)=1$. If π_{p} are the local factors of $\pi(f)$, then π_{p} is spherical for $\operatorname{gcd}(p, N)=1$, with Satake parameters

$$
t_{1, p}=p^{\frac{1-k}{2}} \alpha_{p}, t_{2, p}=p^{\frac{1-k}{2}} \beta_{p}
$$

where

$$
X^{2}-\lambda_{p} X+p^{k-1}=\left(X-\alpha_{p}\right)\left(X-\beta_{p}\right)
$$

The case of modular forms

(I) Say $f \in S_{k}(N)$ satisfies $T_{p}(f)=\lambda_{p} f$ for $\operatorname{gcd}(p, N)=1$. If π_{p} are the local factors of $\pi(f)$, then π_{p} is spherical for $\operatorname{gcd}(p, N)=1$, with Satake parameters

$$
t_{1, p}=p^{\frac{1-k}{2}} \alpha_{p}, \quad t_{2, p}=p^{\frac{1-k}{2}} \beta_{p}
$$

where

$$
X^{2}-\lambda_{p} X+p^{k-1}=\left(X-\alpha_{p}\right)\left(X-\beta_{p}\right)
$$

(II) The next theorem, the Ramanujan-Petersson conjecture for modular forms is a very deep and difficult result.

Theorem (Deligne) If $f \in S_{k}(N)$ satisfies $T_{p}(f)=\lambda_{p} f$ for $\operatorname{gcd}(p, N)=1$, then the Satake parameters of $\pi_{p}(f)$ for $\operatorname{gcd}(p, N)=1$ have absolute value 1 , and so

$$
\left|\lambda_{p}\right| \leq 2 p^{\frac{k-1}{2}}
$$

